A Deep Residual Star Generative Adversarial Network for multi-domain
Image Super-Resolution
- URL: http://arxiv.org/abs/2107.03145v1
- Date: Wed, 7 Jul 2021 11:15:17 GMT
- Title: A Deep Residual Star Generative Adversarial Network for multi-domain
Image Super-Resolution
- Authors: Rao Muhammad Umer, Asad Munir, Christian Micheloni
- Abstract summary: Super-Resolution Residual StarGAN (SR2*GAN) is a novel and scalable approach that super-resolves the LR images for the multiple LR domains using only a single model.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments compared to other state-of-the-art methods.
- Score: 21.39772242119127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, most of state-of-the-art single image super-resolution (SISR)
methods have attained impressive performance by using deep convolutional neural
networks (DCNNs). The existing SR methods have limited performance due to a
fixed degradation settings, i.e. usually a bicubic downscaling of
low-resolution (LR) image. However, in real-world settings, the LR degradation
process is unknown which can be bicubic LR, bilinear LR, nearest-neighbor LR,
or real LR. Therefore, most SR methods are ineffective and inefficient in
handling more than one degradation settings within a single network. To handle
the multiple degradation, i.e. refers to multi-domain image super-resolution,
we propose a deep Super-Resolution Residual StarGAN (SR2*GAN), a novel and
scalable approach that super-resolves the LR images for the multiple LR domains
using only a single model. The proposed scheme is trained in a StarGAN like
network topology with a single generator and discriminator networks. We
demonstrate the effectiveness of our proposed approach in quantitative and
qualitative experiments compared to other state-of-the-art methods.
Related papers
- ClearSR: Latent Low-Resolution Image Embeddings Help Diffusion-Based Real-World Super Resolution Models See Clearer [68.72454974431749]
We present ClearSR, a new method that can better take advantage of latent low-resolution image (LR) embeddings for diffusion-based real-world image super-resolution (Real-ISR)
Our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods.
arXiv Detail & Related papers (2024-10-18T08:35:57Z) - Real-World Image Super Resolution via Unsupervised Bi-directional Cycle
Domain Transfer Learning based Generative Adversarial Network [14.898170534545727]
We propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adrial Network (UBCDTLGAN)
First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world image domain.
Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image.
arXiv Detail & Related papers (2022-11-19T02:19:21Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Closed-loop Matters: Dual Regression Networks for Single Image
Super-Resolution [73.86924594746884]
Deep neural networks have exhibited promising performance in image super-resolution.
These networks learn a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images.
We propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions.
arXiv Detail & Related papers (2020-03-16T04:23:42Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.