Stimulated generation of indistinguishable single photons from a quantum
ladder system
- URL: http://arxiv.org/abs/2107.03232v1
- Date: Wed, 7 Jul 2021 14:04:35 GMT
- Title: Stimulated generation of indistinguishable single photons from a quantum
ladder system
- Authors: Friedrich Sbresny, Lukas Hanschke, Eva Sch\"oll, William Rauhaus,
Bianca Scaparra, Katarina Boos, Hubert Riedl, Jonathan J. Finley, Klaus
J\"ons, and Kai M\"uller
- Abstract summary: We propose a scheme for the generation of highly indistinguishable single photons using semiconductor quantum dots.
The scheme is based on the resonant two-photon excitation of the biexciton followed by stimulation of the biexciton to selectively prepare an exciton.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme for the generation of highly indistinguishable single
photons using semiconductor quantum dots and demonstrate its performance and
potential. The scheme is based on the resonant two-photon excitation of the
biexciton followed by stimulation of the biexciton to selectively prepare an
exciton. Quantum-optical simulations and experiments are in good agreement and
show that the scheme provides significant advantages over previously
demonstrated excitation methods. The two-photon excitation of the biexciton
suppresses re-excitation and enables ultra-low multi-photon errors, while the
precisely timed stimulation pulse results in very low timing jitter of the
photons, and consequently, high indistinguishability. Since both control laser
fields are detuned from the emission energy, the scheme does not require
polarization filtering, facilitating high brightness approaching unity.
Moreover, the polarization of the emitted single photons is controlled by the
stimulation laser field, such that the polarization of the quantum light is
deterministically programmable.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Swing-up dynamics in quantum emitter cavity systems [0.0]
In the Super scheme, excitation of a quantum emitter is achieved with two off-resonant, red-detuned laser pulses.
We extend this promising method to quantum emitters, specifically semiconductor quantum dots, inside a resonant optical cavity.
arXiv Detail & Related papers (2023-03-22T14:42:57Z) - Enhancing the stimulated emission of polarization-entangled photons
using passive optical components [0.0]
We propose a scheme to scale up the stimulated emission of polarization-entangled photon pairs using a resonator with only passive optical components.
We show the theoretical aspects of the scheme and also perform a proof-of-principle experimental demonstration of the scheme in a double-pass configuration.
arXiv Detail & Related papers (2022-11-28T00:39:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Three-photon excitation of quantum two-level systems [0.0]
We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process.
Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes.
We exploit this technique to probe intrinsic properties of InGaN quantum dots.
arXiv Detail & Related papers (2022-02-04T09:20:24Z) - Double-Pulse Generation of Indistinguishable Single Photons with
Optically Controlled Polarization [11.085249064902994]
We show a method to generate indistinguishable single photons with optically controlled polarization by two laser pulses off-resonant with neutral exciton states.
Our work makes an important step towards indistinguishable single-photon sources with near-unity collection efficiency.
arXiv Detail & Related papers (2021-09-20T03:07:18Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Pulse shaping for on-demand emission of single Raman photons from a
quantum-dot biexciton [0.0]
We study single photon emission from an optically driven two-photon Raman transition between the biexciton and the ground state of a quantum dot.
The advantage of this process is that it allows all-optical control of the properties of the emitted single photon with a laser pulse.
We show that laser pulses with non-trivial shapes can be used to maintain excitation conditions for which with increasing pulse intensities the on-demand regime is reached.
arXiv Detail & Related papers (2021-04-28T14:12:56Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.