Enhancing the stimulated emission of polarization-entangled photons
using passive optical components
- URL: http://arxiv.org/abs/2211.14979v2
- Date: Fri, 30 Dec 2022 03:48:17 GMT
- Title: Enhancing the stimulated emission of polarization-entangled photons
using passive optical components
- Authors: Ryo Nozaki, Yoshiro Sato, Yoshitaka Shimada, Taku Suzuki, Kei Yasuno,
Yuta Ikai, Wataru Ueda, Kaito Shimizu, Emi Yukawa, and Kaoru. Sanaka
- Abstract summary: We propose a scheme to scale up the stimulated emission of polarization-entangled photon pairs using a resonator with only passive optical components.
We show the theoretical aspects of the scheme and also perform a proof-of-principle experimental demonstration of the scheme in a double-pass configuration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bright sources of polarization-entangled photon pairs are essential
components for quantum information technologies. In general, it is necessary to
introduce a resonator that combines active optical components such as an
electric optical modulator to enhance the stimulated emission of
polarization-entangled photons. It is technically difficult to perform the time
series operation to output the stimulated entangled photons in the resonator by
synchronizing laser pulses. In this paper, we propose a scheme to scale up the
stimulated emission of polarization-entangled photon pairs using a resonator
with only passive optical components. We show the theoretical aspects of the
scheme and also perform a proof-of-principle experimental demonstration of the
scheme in a double-pass configuration.
Related papers
- Generation of polarization-entangled counter-propagating photons with high orbital angular momentum [0.0]
We propose a fiber-based source of polarization-entangled photons in high-order angular momentum modes.
The photons are converted to modes exhibiting large OAM by the two helical gratings inscribed in the core of the fiber.
arXiv Detail & Related papers (2024-10-15T23:23:20Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - How to read out the phonon number statistics via resonance fluorescence
spectroscopy of a single-photon emitter [0.0]
phononic excitations constitute a useful interaction channel in hybrid quantum systems.
Light-scattering properties of a single-photon emitter and sidebands in resonance fluorescence spectra can be utilized for acousto-optical transduction.
It is shown that the readout is faulty in situations where relevant resonant transitions are forbidden due to vanishing Franck-Condon factors.
arXiv Detail & Related papers (2023-06-30T11:52:57Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Stimulated generation of indistinguishable single photons from a quantum
ladder system [0.0]
We propose a scheme for the generation of highly indistinguishable single photons using semiconductor quantum dots.
The scheme is based on the resonant two-photon excitation of the biexciton followed by stimulation of the biexciton to selectively prepare an exciton.
arXiv Detail & Related papers (2021-07-07T14:04:35Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Pulse shaping for on-demand emission of single Raman photons from a
quantum-dot biexciton [0.0]
We study single photon emission from an optically driven two-photon Raman transition between the biexciton and the ground state of a quantum dot.
The advantage of this process is that it allows all-optical control of the properties of the emitted single photon with a laser pulse.
We show that laser pulses with non-trivial shapes can be used to maintain excitation conditions for which with increasing pulse intensities the on-demand regime is reached.
arXiv Detail & Related papers (2021-04-28T14:12:56Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.