Quantum evolution kernel : Machine learning on graphs with programmable
arrays of qubits
- URL: http://arxiv.org/abs/2107.03247v1
- Date: Wed, 7 Jul 2021 14:25:18 GMT
- Title: Quantum evolution kernel : Machine learning on graphs with programmable
arrays of qubits
- Authors: Louis-Paul Henry, Slimane Thabet, Constantin Dalyac and Lo\"ic Henriet
- Abstract summary: We introduce a procedure for measuring the similarity between graph-structured data, based on the time-evolution of a quantum system.
By encoding the topology of the input graph in the Hamiltonian of the system, the evolution produces measurement samples that retain key features of the data.
We show numerically that this scheme performs well compared to standard graph kernels on typical benchmark datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of reliable Quantum Processing Units (QPU) opens up
novel computational opportunities for machine learning. Here, we introduce a
procedure for measuring the similarity between graph-structured data, based on
the time-evolution of a quantum system. By encoding the topology of the input
graph in the Hamiltonian of the system, the evolution produces measurement
samples that retain key features of the data. We study analytically the
procedure and illustrate its versatility in providing links to standard
classical approaches. We then show numerically that this scheme performs well
compared to standard graph kernels on typical benchmark datasets. Finally, we
study the possibility of a concrete implementation on a realistic neutral-atom
quantum processor.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
We propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers.
Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware.
arXiv Detail & Related papers (2024-05-21T17:56:33Z) - A hybrid quantum-classical classifier based on branching multi-scale
entanglement renormalization ansatz [5.548873288570182]
This paper proposes a quantum semi-supervised classifier based on label propagation.
Considering the difficulty of graph construction, we develop a variational quantum label propagation (VQLP) method.
In this method, a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.
arXiv Detail & Related papers (2023-03-14T13:46:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - Quantum kernels for real-world predictions based on electronic health
records [0.0]
We report the first systematic investigation of empirical quantum advantage (EQA) in healthcare and life sciences.
For each configuration coordinate, we trained classical support vector machine (SVM) models based on radial basis function (RBF) kernels and quantum models with custom kernels using an IBM quantum computer.
We empirically identified regimes where quantum kernels could provide advantage on a particular data set and introduced a terrain ruggedness index, a metric to help quantitatively estimate how the accuracy of a given model will perform.
arXiv Detail & Related papers (2021-12-12T12:06:19Z) - Quantum machine learning of graph-structured data [0.38581147665516596]
We consider graph-structured quantum data and describe how to carry out its quantum machine learning via quantum neural networks.
We explain how to systematically exploit this additional graph structure to improve quantum learning algorithms.
arXiv Detail & Related papers (2021-03-19T14:39:19Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.