論文の概要: A Quantum Convolutional Neural Network for Image Classification
- arxiv url: http://arxiv.org/abs/2107.03630v2
- Date: Wed, 4 Aug 2021 07:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 02:18:30.587250
- Title: A Quantum Convolutional Neural Network for Image Classification
- Title(参考訳): 画像分類のための量子畳み込みニューラルネットワーク
- Authors: Yanxuan L\"u, Qing Gao, Jinhu L\"u, Maciej Ogorza{\l}ek, Jin Zheng
- Abstract要約: 量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
- 参考スコア(独自算出の注目度): 7.745213180689952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks have achieved great success in many fields ranging
from image recognition to video understanding. However, its high requirements
for computing and memory resources have limited further development on
processing big data with high dimensions. In recent years, advances in quantum
computing show that building neural networks on quantum processors is a
potential solution to this problem. In this paper, we propose a novel neural
network model named Quantum Convolutional Neural Network (QCNN), aiming at
utilizing the computing power of quantum systems to accelerate classical
machine learning tasks. The designed QCNN is based on implementable quantum
circuits and has a similar structure as classical convolutional neural
networks. Numerical simulation results on the MNIST dataset demonstrate the
effectiveness of our model.
- Abstract(参考訳): ニューラルネットワークは、画像認識からビデオ理解まで、多くの分野で大きな成功を収めています。
しかしながら、コンピューティングとメモリリソースに対する高い要求は、ビッグデータを高次元で処理する上でのさらなる開発を制限している。
近年、量子コンピューティングの進歩は、量子プロセッサ上でニューラルネットワークを構築することがこの問題の潜在的な解決策であることを示している。
本稿では、量子システムの計算能力を利用して古典的機械学習タスクを高速化することを目的とした、量子畳み込みニューラルネットワーク(qcnn)と呼ばれる新しいニューラルネットワークモデルを提案する。
設計されたQCNNは実装可能な量子回路に基づいており、古典的な畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
本稿では,量子ニューラルネットワークのための新しい量子ニューラルネットワークモデルを提案する。
我々のモデルは、状態空間のサイズがニューロンの数とともに指数関数的に大きくなるという問題を回避している。
我々は手書き文字認識や他の非線形分類タスクのモデルをベンチマークする。
論文 参考訳(メタデータ) (2023-05-15T11:16:47Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
量子フーリエ畳み込みネットワーク(Quantum Fourier Convolutional Network, QFCN)というハイブリッド量子古典回路を提案する。
提案モデルは,古典的CNNと比較して指数的な高速化を実現し,既存の量子CNNの最良の結果よりも向上する。
交通予測や画像分類など,さまざまなディープラーニングタスクに適用することで,このアーキテクチャの可能性を示す。
論文 参考訳(メタデータ) (2021-06-19T04:37:39Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Optical Convolutional Neural Network: A Novel Image Recognition
Framework for Quantum Computing [0.0]
量子コンピューティングに基づく新しいディープラーニングモデルQuantum Optical Convolutional Neural Network (QOCNN)について報告する。
我々はこの新しいアーキテクチャを、セミナルなLeNetモデルに基づいた従来のCNNと比較した。
ディープラーニングへの量子コンピューティングベースのアプローチへの切り替えは、古典的モデルに匹敵する精度をもたらす可能性があると結論付けている。
論文 参考訳(メタデータ) (2020-12-19T23:10:04Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。