Dynamics of quantum information scrambling under decoherence effects
measured via active spins clusters
- URL: http://arxiv.org/abs/2107.03870v2
- Date: Fri, 3 Dec 2021 19:57:53 GMT
- Title: Dynamics of quantum information scrambling under decoherence effects
measured via active spins clusters
- Authors: Federico D. Dom\'inguez and Gonzalo A. \'Alvarez
- Abstract summary: Local information propagates in the system by creating correlations known as information scrambling.
We develop a model adapted from solid-state NMR methods, to quantify the information scrambling.
An excellent quantitative agreement is found with the dynamics of quantum information scrambling and its localization effects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing quantum technologies requires the control and understanding of the
non-equilibrium dynamics of quantum information in many-body systems. Local
information propagates in the system by creating complex correlations known as
information scrambling, as this process prevents extracting the information
from local measurements. In this work, we develop a model adapted from
solid-state NMR methods, to quantify the information scrambling. The scrambling
is measured via time-reversal Loschmidt echoes (LE) and Multiple Quantum
Coherences experiments that intrinsically contain imperfections. Considering
these imperfections, we derive expressions for out-of-time-order correlators
(OTOCs) to quantify the observable information scrambling based on measuring
the number of active spins where the information was spread. Based on the OTOC
expressions, decoherence effects arise naturally by the effects of the
nonreverted terms in the LE experiment. Decoherence induces localization of the
measurable degree of information scrambling. These effects define a
localization cluster size for the observable number of active spins that
determines a dynamical equilibrium. We contrast the model's predictions with
quantum simulations performed with solid-state NMR experiments, that measure
the information scrambling with time-reversal echoes with controlled
imperfections. An excellent quantitative agreement is found with the dynamics
of quantum information scrambling and its localization effects determined from
the experimental data. The presented model and derived OTOCs set tools for
quantifying the quantum information dynamics of large quantum systems (more
than $10^{4}$ spins) consistent with experimental implementations that
intrinsically contain imperfections.
Related papers
- Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Data-driven discovery of statistically relevant information in quantum
simulators [0.0]
We present a theoretical framework for information extraction in synthetic quantum matter.
We demonstrate a system-agnostic approach to identify dominant degrees of freedom.
Our assumption-free approach can be immediately applied in a variety of experimental platforms.
arXiv Detail & Related papers (2023-07-19T15:20:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Information Scrambling in Quantum Many-body Scarred Systems [10.413943995320887]
We study the quantum information scrambling dynamics in quantum many-body scarred systems.
We find that both the OTOC and Holevo information exhibit a linear light cone and periodic oscillations inside the light cone for initial states within the scarred subspace.
arXiv Detail & Related papers (2022-01-05T19:00:02Z) - Directional scrambling of quantum information in helical multiferroics [0.0]
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
arXiv Detail & Related papers (2021-12-20T17:58:19Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Local Operator Entanglement in Spin Chains [0.0]
Local perturbations can affect the entire quantum system.
quantum computers employ non-equilibrium processes for computations.
In this paper, we investigate the evolution of bi- and tripartite operator mutual information of the time-evolution operator and the Pauli spin operators.
arXiv Detail & Related papers (2020-12-29T05:11:28Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions [0.0]
In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
arXiv Detail & Related papers (2020-01-07T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.