Directional scrambling of quantum information in helical multiferroics
- URL: http://arxiv.org/abs/2112.10710v1
- Date: Mon, 20 Dec 2021 17:58:19 GMT
- Title: Directional scrambling of quantum information in helical multiferroics
- Authors: M. Sekania, M. Melz, N. Sedlmayr, Sunil K. Mishra, J. Berakdar
- Abstract summary: Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local excitations as carriers of quantum information spread out in the system
in ways governed by the underlying interaction and symmetry. Understanding this
phenomenon, also called quantum scrambling, is a prerequisite for employing
interacting systems for quantum information processing. The character and
direction dependence of quantum scrambling can be inferred from the
out-of-time-ordered commutators (OTOCs) containing information on correlation
buildup and entanglement spreading. Employing OTOC, we study and quantify the
directionality of quantum information propagation in oxide-based helical spin
systems hosting a spin-driven ferroelectric order. In these systems,
magnetoelectricity permits the spin dynamics and associated information content
to be controlled by an electric field coupled to the emergent ferroelectric
order. We show that topologically nontrivial quantum phases, such as chiral or
helical spin ordering, allows for electric-field controlled anisotropic
scrambling and a direction-dependent buildup of quantum correlations. Based on
general symmetry considerations, we find that starting from a pure state (e.g.,
the ground state) or a finite temperature state is essential for observing
directional asymmetry in scrambling. In the systematic numerical studies of
OTOC, we quantify the directional asymmetry of the scrambling and verify the
conjectured form of the OTOC around the ballistic wavefront. The obtained
direction-dependent butterfly velocity $v_{\mathrm{B}}(\mathbf{n})$ provides
information on the speed of the ballistic wavefront. In general, our
calculations show an early-time power-law behavior of OTOC, as expected from an
analytic expansion for small times. The long-time behavior of OTOC reveals the
importance of (non-)integrability of the underlying Hamiltonian as well as the
implications of conserved quantities such as the $z$-projection of the total
spin.
Related papers
- Shortcuts to adiabaticity in open quantum critical systems [0.0]
We study shortcuts to adiabaticity (STA) through counterdiabatic driving in quantum critical systems.
We evaluate unitary as well as non-unitary controls, such that the system density matrix follows a prescribed trajectory.
We expect the counterdiabatic protocol studied here can be of fundamental importance for understanding STA in many-body open quantum systems.
arXiv Detail & Related papers (2024-09-10T10:09:07Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Dynamics of entropy and information of time-dependent quantum systems:
exact results [0.0]
Dynamical aspects of information-theoretic and entropic measures of quantum systems are studied.
We show that for the time-dependent harmonic oscillator, as well as for the charged particle in certain time-varying electromagnetic fields, the increase of the entropy and dynamics of the Fisher information can be directly described and related.
We detail the behavior of quantum quenches for the case of mutually non-interacting non-relativistic fermions in a harmonic trap.
arXiv Detail & Related papers (2021-08-02T15:22:32Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.