論文の概要: Structured Model Pruning of Convolutional Networks on Tensor Processing
Units
- arxiv url: http://arxiv.org/abs/2107.04191v1
- Date: Fri, 9 Jul 2021 03:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 02:01:30.004027
- Title: Structured Model Pruning of Convolutional Networks on Tensor Processing
Units
- Title(参考訳): テンソル処理ユニット上の畳み込みネットワークの構造化モデルプルーニング
- Authors: Kongtao Chen, Ken Franko, Ruoxin Sang
- Abstract要約: 構造化モデルプルーニングは、これらの要求を緩和するための有望なアプローチである。
種々の構造化モデルプルーニング手法とデータセットの精度・効率トレードオフを計測する。
構造化モデルプルーニングは,TPUのモデルメモリ使用量や速度を,精度を損なうことなく大幅に向上させることができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of convolutional neural networks is often hindered by high
computational and storage requirements. Structured model pruning is a promising
approach to alleviate these requirements. Using the VGG-16 model as an example,
we measure the accuracy-efficiency trade-off for various structured model
pruning methods and datasets (CIFAR-10 and ImageNet) on Tensor Processing Units
(TPUs). To measure the actual performance of models, we develop a structured
model pruning library for TensorFlow2 to modify models in place (instead of
adding mask layers). We show that structured model pruning can significantly
improve model memory usage and speed on TPUs without losing accuracy,
especially for small datasets (e.g., CIFAR-10).
- Abstract(参考訳): 畳み込みニューラルネットワークの展開は、高い計算能力とストレージ要件によってしばしば妨げられる。
構造化モデルプルーニングは、これらの要求を緩和するための有望なアプローチである。
例えば、VGG-16モデルを用いて、テンソル処理ユニット(TPU)上の様々な構造化モデルプルーニング手法とデータセット(CIFAR-10およびImageNet)の精度-効率トレードオフを測定する。
モデルの実際の性能を測定するため、TensorFlow2のための構造化モデルプルーニングライブラリを開発し、(マスク層を追加する代わりに)モデルを修正する。
特に小さなデータセット(例えばcifar-10)では、構造化モデルプルーニングがモデルメモリ使用量とtpusの速度を大幅に改善できることを示した。
関連論文リスト
- RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
RL-Prunerを提案する。このRL-Prunerは、強化学習を用いて最適プルーニング分布を学習する。
RL-Prunerは、モデル固有のプルーニング実装を必要とせずに、入力モデル内のフィルタ間の依存関係を自動的に抽出し、プルーニングを実行する。
論文 参考訳(メタデータ) (2024-11-10T13:35:10Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - CRISP: Hybrid Structured Sparsity for Class-aware Model Pruning [4.775684973625185]
機械学習パイプラインは、幅広いクラスにわたる正確性を達成するために、普遍的なモデルを訓練することが多い。
この格差は、ユーザー固有のクラスにフォーカスするようにモデルを調整することで、計算効率を高める機会を提供する。
細粒度N:M構造と粗粒度ブロックの粒度を組み合わせた新しい刈り込みフレームワークCRISPを提案する。
我々のプルーニング戦略は、勾配に基づくクラス対応サリエンシスコアによって導かれ、ユーザ固有のクラスに不可欠なウェイトを維持できる。
論文 参考訳(メタデータ) (2023-11-24T04:16:32Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - Load-balanced Gather-scatter Patterns for Sparse Deep Neural Networks [20.374784902476318]
モデル重み付けにゼロを導入する方法として, モデル精度と計算効率のトレードオフを良好に提供する方法として, プルーニングが有効であることが示されている。
現代のプロセッサには、高速なオンチップスクラッチパッドメモリと、間接的に負荷を発生させ、そのようなメモリ上の操作を格納する集/散乱エンジンが備わっている。
本研究では,スクラッチパッドメモリと集合/散乱エンジンを利用して,ニューラルネットワークの推論を高速化する,新しいスパースパターン(GSパターン)を提案する。
論文 参考訳(メタデータ) (2021-12-20T22:55:45Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - A Gradient Flow Framework For Analyzing Network Pruning [11.247894240593693]
最近のネットワークプルーニング手法は、トレーニングの初期段階におけるプルーニングモデルに焦点を当てている。
モデルパラメータのノルムを通した重要度を統一するために勾配流を用いた一般的なフレームワークを開発する。
我々は,CIFAR-10/CIFAR-100でトレーニングしたVGG-13,MobileNet-V1,ResNet-56のいくつかのモデルについて検証を行った。
論文 参考訳(メタデータ) (2020-09-24T17:37:32Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。