Learning Deformable Registration of Medical Images with Anatomical
Constraints
- URL: http://arxiv.org/abs/2001.07183v2
- Date: Wed, 22 Jan 2020 13:25:16 GMT
- Title: Learning Deformable Registration of Medical Images with Anatomical
Constraints
- Authors: Lucas Mansilla, Diego H. Milone, Enzo Ferrante
- Abstract summary: Deformable image registration is a fundamental problem in the field of medical image analysis.
We learn global non-linear representations of image anatomy using segmentation masks, and employ them to constraint the registration process.
Our experiments show that the proposed anatomically constrained registration model produces more realistic and accurate results than state-of-the-art methods.
- Score: 4.397224870979238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformable image registration is a fundamental problem in the field of
medical image analysis. During the last years, we have witnessed the advent of
deep learning-based image registration methods which achieve state-of-the-art
performance, and drastically reduce the required computational time. However,
little work has been done regarding how can we encourage our models to produce
not only accurate, but also anatomically plausible results, which is still an
open question in the field. In this work, we argue that incorporating
anatomical priors in the form of global constraints into the learning process
of these models, will further improve their performance and boost the realism
of the warped images after registration. We learn global non-linear
representations of image anatomy using segmentation masks, and employ them to
constraint the registration process. The proposed AC-RegNet architecture is
evaluated in the context of chest X-ray image registration using three
different datasets, where the high anatomical variability makes the task
extremely challenging. Our experiments show that the proposed anatomically
constrained registration model produces more realistic and accurate results
than state-of-the-art methods, demonstrating the potential of this approach.
Related papers
- Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - A Meta-Learning Approach for Medical Image Registration [6.518615946009265]
We propose a novel unsupervised registration model which is integrated with a gradient-based meta learning framework.
In our experiments, the proposed model obtained significantly improved performance in terms of accuracy and training time.
arXiv Detail & Related papers (2021-04-21T10:27:05Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
We present a novel contrastive registration architecture for unsupervised medical image segmentation.
Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation.
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
arXiv Detail & Related papers (2020-11-17T19:29:08Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.