論文の概要: Offline reinforcement learning with uncertainty for treatment strategies
in sepsis
- arxiv url: http://arxiv.org/abs/2107.04491v1
- Date: Fri, 9 Jul 2021 15:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-12 18:21:56.779538
- Title: Offline reinforcement learning with uncertainty for treatment strategies
in sepsis
- Title(参考訳): 敗血症治療戦略の不確実性を考慮したオフライン強化学習
- Authors: Ran Liu (1 and 2), Joseph L. Greenstein (1 and 2), James C. Fackler
(3), Jules Bergmann (3), Melania M. Bembea (3 and 4), Raimond L. Winslow (1
and 2) ((1) Institute for Computational Medicine, the Johns Hopkins
University, (2) Department of Biomedical Engineering, the Johns Hopkins
University School of Medicine and Whiting School of Engineering, (3)
Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins
University, (4) Department of Pediatrics, the Johns Hopkins University School
of Medicine)
- Abstract要約: 本稿では,データから敗血症治療に最適な推奨事項を抽出する強化学習の新たな応用法を提案する。
提案手法は1つのレコメンデーションではなく,いくつかの治療法を提示できる。
我々は,学習方針を検証し,死亡率と治療水準の相違により,強化学習が積極的な介入に偏っていることを明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guideline-based treatment for sepsis and septic shock is difficult because
sepsis is a disparate range of life-threatening organ dysfunctions whose
pathophysiology is not fully understood. Early intervention in sepsis is
crucial for patient outcome, yet those interventions have adverse effects and
are frequently overadministered. Greater personalization is necessary, as no
single action is suitable for all patients. We present a novel application of
reinforcement learning in which we identify optimal recommendations for sepsis
treatment from data, estimate their confidence level, and identify treatment
options infrequently observed in training data. Rather than a single
recommendation, our method can present several treatment options. We examine
learned policies and discover that reinforcement learning is biased against
aggressive intervention due to the confounding relationship between mortality
and level of treatment received. We mitigate this bias using subspace learning,
and develop methodology that can yield more accurate learning policies across
healthcare applications.
- Abstract(参考訳): 敗血症と敗血症性ショックに対するガイドラインに基づく治療は、病態を十分に理解していない生命を脅かす臓器機能障害の異なる範囲であるため困難である。
敗血症の早期介入は患者の予後に不可欠であるが、これらの介入は副作用があり、しばしば過剰投与される。
すべての患者には単一の行動が適さないため、より個人化が必要である。
本稿では,データから敗血症治療の最適勧告を抽出し,信頼度を推定し,トレーニングデータで頻繁に観察される治療オプションを同定する,強化学習の新たな応用を提案する。
単一の推奨ではなく,いくつかの治療法を提示できる。
学習方針を考察し, 死亡率と治療のレベルが重なり合うことから, 強化学習は積極的な介入に偏っていることを見出した。
このバイアスをサブスペース学習を用いて軽減し、医療アプリケーション全体でより正確な学習方針をもたらす方法を開発します。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
我々は、最適な治療体制を特定するための安全かつ解釈可能な枠組みを運用する。
本研究は患者の医療歴と薬理学的特徴に基づくパーソナライズされた治療戦略を支援する。
論文 参考訳(メタデータ) (2023-10-23T19:59:10Z) - Learning Optimal Treatment Strategies for Sepsis Using Offline
Reinforcement Learning in Continuous Space [4.031538204818658]
本稿では,臨床医がリアルタイム治療に最適な基準選択を推奨するのに役立つ,歴史的データに基づく新しい医療決定モデルを提案する。
本モデルでは, オフライン強化学習と深層強化学習を組み合わせることで, 医療における従来の強化学習が環境と相互作用できない問題に対処する。
論文 参考訳(メタデータ) (2022-06-22T16:17:21Z) - A Conservative Q-Learning approach for handling distribution shift in
sepsis treatment strategies [0.0]
どんな介入が最善かについては合意が得られず、異なる患者が同じ治療に対して非常に異なる反応を示す。
深層強化学習法は、医師の行動を反映した治療戦略のための最適なポリシーを考案するために用いられる。
この方針は、集中治療室の診療医が敗血症患者を治療し、生存率を向上させる上でより良い判断を下すのに役立つ可能性がある。
論文 参考訳(メタデータ) (2022-03-25T19:50:18Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Unifying Cardiovascular Modelling with Deep Reinforcement Learning for
Uncertainty Aware Control of Sepsis Treatment [0.2399911126932526]
血管抑制剤および流動管理のための作戦で普遍的に合意がありません。
セプシスはICUの主要な死亡原因であり、すべての入院の6%と米国の病院内死亡の35%を担当しています。
本稿では,数学モデリング,深層学習,強化学習,不確実性定量化の補完的強みを活用し,統一する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-21T07:32:02Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
本研究の目的は, 介入を最適化する強化学習(RL)が, 学習方針の治験に対する規制に適合する経路を遡及的に得る枠組みを確立することである。
我々は,死の主な原因の一つであり,複雑で不透明な患者動態のため治療が困難である集中治療室の感染症に焦点を当てた。
論文 参考訳(メタデータ) (2020-03-13T20:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。