BayesSimIG: Scalable Parameter Inference for Adaptive Domain
Randomization with IsaacGym
- URL: http://arxiv.org/abs/2107.04527v1
- Date: Fri, 9 Jul 2021 16:21:31 GMT
- Title: BayesSimIG: Scalable Parameter Inference for Adaptive Domain
Randomization with IsaacGym
- Authors: Rika Antonova, Fabio Ramos, Rafael Possas, Dieter Fox
- Abstract summary: BayesSimIG is a library that provides an implementation of BayesSim integrated with the recently released NVIDIA IsaacGym.
BayesSimIG provides an integration with NVIDIABoard to easily visualize slices of high-dimensional posteriors.
- Score: 59.53949960353792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: BayesSim is a statistical technique for domain randomization in reinforcement
learning based on likelihood-free inference of simulation parameters. This
paper outlines BayesSimIG: a library that provides an implementation of
BayesSim integrated with the recently released NVIDIA IsaacGym. This
combination allows large-scale parameter inference with end-to-end GPU
acceleration. Both inference and simulation get GPU speedup, with support for
running more than 10K parallel simulation environments for complex robotics
tasks that can have more than 100 simulation parameters to estimate. BayesSimIG
provides an integration with TensorBoard to easily visualize slices of
high-dimensional posteriors. The library is built in a modular way to support
research experiments with novel ways to collect and process the trajectories
from the parallel IsaacGym environments.
Related papers
- Compositional simulation-based inference for time series [21.9975782468709]
simulators frequently emulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI framework that can exploit such Markovian simulators by locally identifying parameters consistent with individual state transitions.
We then compose these local results to obtain a posterior over parameters that align with the entire time series observation.
arXiv Detail & Related papers (2024-11-05T01:55:07Z) - Promptable Closed-loop Traffic Simulation [57.36568236100507]
ProSim is a multimodal promptable closed-loop traffic simulation framework.
ProSim rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants.
To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset.
arXiv Detail & Related papers (2024-09-09T17:59:15Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations [0.0]
Self-supervised learning is the backbone of state of the art language modeling.
It has been argued that training with predictive loss on a self-supervised dataset causes simulators.
arXiv Detail & Related papers (2023-11-29T09:32:56Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation [34.30381620584878]
To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system.
We address the latter problem of estimating parameters through a Bayesian inference approach.
We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel.
arXiv Detail & Related papers (2021-09-18T03:05:44Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z) - Using Machine Learning at Scale in HPC Simulations with SmartSim: An
Application to Ocean Climate Modeling [52.77024349608834]
We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online inference of Deep Neural Networks (DNN) using SmartSim.
SmartSim is a library dedicated to enabling online analysis and Machine Learning (ML) for traditional HPC simulations.
arXiv Detail & Related papers (2021-04-13T19:27:28Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
We present algorithms for nested neural likelihood-to-evidence ratio estimation and simulation reuse.
Together, these algorithms enable automatic and extremely simulator efficient estimation of marginal and joint posteriors.
arXiv Detail & Related papers (2020-11-27T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.