Dense-Sparse Deep Convolutional Neural Networks Training for Image Denoising
- URL: http://arxiv.org/abs/2107.04857v2
- Date: Fri, 30 Aug 2024 10:43:08 GMT
- Title: Dense-Sparse Deep Convolutional Neural Networks Training for Image Denoising
- Authors: Basit O. Alawode, Mudassir Masood,
- Abstract summary: Deep learning methods such as the convolutional neural networks have gained prominence in the area of image denoising.
Deep denoising convolutional neural networks use many feed-forward convolution layers with added regularization methods of batch normalization and residual learning to speed up training and improve denoising performance significantly.
In this paper, we show that by employing an enhanced dense-sparse-dense network training procedure to the deep denoising convolutional neural networks, comparable denoising performance level can be achieved at a significantly reduced number of trainable parameters.
- Score: 0.6215404942415159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep learning methods such as the convolutional neural networks have gained prominence in the area of image denoising. This is owing to their proven ability to surpass state-of-the-art classical image denoising algorithms such as block-matching and 3D filtering algorithm. Deep denoising convolutional neural networks use many feed-forward convolution layers with added regularization methods of batch normalization and residual learning to speed up training and improve denoising performance significantly. However, this comes at the expense of a huge number of trainable parameters. In this paper, we show that by employing an enhanced dense-sparse-dense network training procedure to the deep denoising convolutional neural networks, comparable denoising performance level can be achieved at a significantly reduced number of trainable parameters. We derive motivation from the fact that networks trained using the dense-sparse-dense approach have been shown to attain performance boost with reduced number of parameters. The proposed reduced deep denoising convolutional neural networks network is an efficient denoising model with significantly reduced parameters and comparable performance to the deep denoising convolutional neural networks. Additionally, denoising was achieved at significantly reduced processing time.
Related papers
- Learning Provably Robust Estimators for Inverse Problems via Jittering [51.467236126126366]
We investigate whether jittering, a simple regularization technique, is effective for learning worst-case robust estimators for inverse problems.
We show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising.
arXiv Detail & Related papers (2023-07-24T14:19:36Z) - Neural information coding for efficient spike-based image denoising [0.5156484100374058]
In this work we investigate Spiking Neural Networks (SNNs) for Gaussian denoising.
We propose a formal analysis of the information conversion processing carried out by the Leaky Integrate and Fire (LIF) neurons.
We compare its performance with the classical rate-coding mechanism.
Our results show that SNNs with LIF neurons can provide competitive denoising performance but at a reduced computational cost.
arXiv Detail & Related papers (2023-05-15T09:05:32Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Image denoising by Super Neurons: Why go deep? [31.087153520130112]
We investigate the use of super neurons for both synthetic and real-world image denoising.
Our results demonstrate that with the same width and depth, Self-ONNs with super neurons provide a significant boost of denoising performance.
arXiv Detail & Related papers (2021-11-29T20:52:10Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Exploring ensembles and uncertainty minimization in denoising networks [0.522145960878624]
We propose a fusion model consisting of two attention modules, which focus on assigning the proper weights to pixels and channels.
The experimental results show that our model achieves better performance on top of the baseline of regular pre-trained denoising networks.
arXiv Detail & Related papers (2021-01-24T20:48:18Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
This paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training scheme to improve image denoising performance.
Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods.
arXiv Detail & Related papers (2020-10-23T14:14:00Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.