Designing Recommender Systems to Depolarize
- URL: http://arxiv.org/abs/2107.04953v1
- Date: Sun, 11 Jul 2021 03:23:42 GMT
- Title: Designing Recommender Systems to Depolarize
- Authors: Jonathan Stray
- Abstract summary: Polarization is implicated in the erosion of democracy and the progression to violence.
While algorithm-driven social media does not seem to be a primary driver of polarization at the country level, it could be a useful intervention point in polarized societies.
This paper examines algorithmic depolarization interventions with the goal of conflict transformation.
- Score: 0.32634122554913997
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polarization is implicated in the erosion of democracy and the progression to
violence, which makes the polarization properties of large algorithmic content
selection systems (recommender systems) a matter of concern for peace and
security. While algorithm-driven social media does not seem to be a primary
driver of polarization at the country level, it could be a useful intervention
point in polarized societies. This paper examines algorithmic depolarization
interventions with the goal of conflict transformation: not suppressing or
eliminating conflict but moving towards more constructive conflict. Algorithmic
intervention is considered at three stages: which content is available
(moderation), how content is selected and personalized (ranking), and content
presentation and controls (user interface). Empirical studies of online
conflict suggest that the exposure diversity intervention proposed as an
antidote to "filter bubbles" can be improved and can even worsen polarization
under some conditions. Using civility metrics in conjunction with diversity in
content selection may be more effective. However, diversity-based interventions
have not been tested at scale and may not work in the diverse and dynamic
contexts of real platforms. Instead, intervening in platform polarization
dynamics will likely require continuous monitoring of polarization metrics,
such as the widely used "feeling thermometer." These metrics can be used to
evaluate product features, and potentially engineered as algorithmic
objectives. It may further prove necessary to include polarization measures in
the objective functions of recommender algorithms to prevent optimization
processes from creating conflict as a side effect.
Related papers
- An Efficient Local Search Approach for Polarized Community Discovery in Signed Networks [3.2688425993442696]
We study signed networks, where edges are labeled as positive or negative to indicate friendly or antagonistic interactions.
We develop an approach based on Frank-Wolfe optimization, leading to a local search procedure with provable convergence guarantees.
Our method is both scalable and efficient, outperforming state-of-the-art baselines in solution quality while remaining competitive in terms of computational efficiency.
arXiv Detail & Related papers (2025-02-04T10:22:01Z) - Quantifying Polarization: A Comparative Study of Measures and Methods [2.0249250133493195]
Political polarization, a key driver of social fragmentation, has drawn increasing attention for its role in shaping online and offline discourse.
This study evaluates five widely used polarization measures, testing their strengths and weaknesses with synthetic datasets.
We present a novel adaptation of Kleinberg's burst detection algorithm to improve mode detection in polarized distributions.
arXiv Detail & Related papers (2025-01-13T16:43:23Z) - In-Group Love, Out-Group Hate: A Framework to Measure Affective Polarization via Contentious Online Discussions [2.8963943201523796]
We introduce a discrete choice model that captures decision-making within affectively polarized social networks.
We propose a statistical inference method estimate key parameters -- in-group love and out-group hate -- from social media data.
arXiv Detail & Related papers (2024-12-18T23:58:13Z) - Inference-Time Policy Steering through Human Interactions [54.02655062969934]
During inference, humans are often removed from the policy execution loop.
We propose an Inference-Time Policy Steering framework that leverages human interactions to bias the generative sampling process.
Our proposed sampling strategy achieves the best trade-off between alignment and distribution shift.
arXiv Detail & Related papers (2024-11-25T18:03:50Z) - A More Advanced Group Polarization Measurement Approach Based on LLM-Based Agents and Graphs [5.285847977231642]
Measuring group polarization on social media presents several challenges that have not yet been addressed by existing solutions.
We designed a solution based on a multi-agent system and used a graph-structured Community Sentiment Network (CSN) to represent polarization states.
In summary, the proposed approach has significant value in terms of usability, accuracy, and interpretability.
arXiv Detail & Related papers (2024-11-19T03:29:17Z) - Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
We leverage an online attack on the vulnerable data collection process.
From the game-theoretic perspective, the confrontation scenario is formulated as a distributionally robust game.
The proposed method manipulates the results of rank aggregation methods in a sequential manner.
arXiv Detail & Related papers (2024-07-02T03:31:21Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
arXiv Detail & Related papers (2024-04-30T15:20:41Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - Network polarization, filter bubbles, and echo chambers: An annotated
review of measures and reduction methods [0.0]
Polarization arises when the underlying network becomes characterized by highly connected groups with weak inter-group connectivity.
This work presents an annotated review of network polarization measures and models used to handle the polarization.
arXiv Detail & Related papers (2022-07-27T21:23:27Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.