Effect of Input Size on the Classification of Lung Nodules Using
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2107.05085v1
- Date: Sun, 11 Jul 2021 16:52:30 GMT
- Title: Effect of Input Size on the Classification of Lung Nodules Using
Convolutional Neural Networks
- Authors: Gorkem Polat, Yesim Dogrusoz Serinagaoglu, Ugur Halici
- Abstract summary: Lung cancer screening using annual low-dose computed tomography (CT) reduces lung cancer mortality by 20% compared to traditional chest radiography.
The number of slices in a CT scan can be up to 600. Therefore, computer-aided-detection (CAD) systems are very important for faster and more accurate assessment of the data.
In this study, we proposed a framework that analyzes CT lung screenings using convolutional neural networks (CNNs) to reduce false positives.
- Score: 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have shown that lung cancer screening using annual low-dose
computed tomography (CT) reduces lung cancer mortality by 20% compared to
traditional chest radiography. Therefore, CT lung screening has started to be
used widely all across the world. However, analyzing these images is a serious
burden for radiologists. The number of slices in a CT scan can be up to 600.
Therefore, computer-aided-detection (CAD) systems are very important for faster
and more accurate assessment of the data. In this study, we proposed a
framework that analyzes CT lung screenings using convolutional neural networks
(CNNs) to reduce false positives. We trained our model with different volume
sizes and showed that volume size plays a critical role in the performance of
the system. We also used different fusions in order to show their power and
effect on the overall accuracy. 3D CNNs were preferred over 2D CNNs because 2D
convolutional operations applied to 3D data could result in information loss.
The proposed framework has been tested on the dataset provided by the LUNA16
Challenge and resulted in a sensitivity of 0.831 at 1 false positive per scan.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - LCDctCNN: Lung Cancer Diagnosis of CT scan Images Using CNN Based Model [0.0]
We proposed a deep learning model-based Convolutional Neural Network framework for the early detection of lung cancer using CT scan images.
It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.
arXiv Detail & Related papers (2023-04-10T18:47:20Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
This study was to identify the nodule that were developing in the lungs of the participants.
One-stage detector YOLOv5 trained on 280 CT SCAN from a public dataset LIDC-IDRI based on segmented pulmonary nodules.
arXiv Detail & Related papers (2022-12-31T17:31:22Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - 3D RegNet: Deep Learning Model for COVID-19 Diagnosis on Chest CT Image [9.407002591446286]
A 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection.
The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.
arXiv Detail & Related papers (2021-07-08T18:10:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.