Perspective on witnessing entanglement in hybrid quantum systems
- URL: http://arxiv.org/abs/2107.05208v2
- Date: Thu, 16 Sep 2021 13:12:58 GMT
- Title: Perspective on witnessing entanglement in hybrid quantum systems
- Authors: Yingqiu Mao, Ming Gong, Kae Nemoto, William J. Munro, Johannes Majer
- Abstract summary: Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices.
In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems.
- Score: 13.83833602613384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum systems aim at combining the advantages of different physical
systems and to produce novel quantum devices. In particular, the hybrid
combination of superconducting circuits and spins in solid-state crystals is a
versatile platform to explore many quantum electrodynamics problems. Recently,
the remote coupling of nitrogen-vacancy center spins in diamond via a
superconducting bus was demonstrated. However, a rigorous experimental test of
the quantum nature of this hybrid system and in particular entanglement is
still missing. We review the theoretical ideas to generate and detect
entanglement, and present our own scheme to achieve this.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium [0.0]
We review the basic concepts of superconducting quantum simulation and their recent experimental progress.
We discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
arXiv Detail & Related papers (2024-10-16T08:27:01Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Probing resonating valence bonds on a programmable germanium quantum
simulator [0.0]
We introduce quantum simulation using hole spins in germanium quantum dots.
We demonstrate extensive and coherent control enabling the tuning of multi-spin states in isolated, paired, and fully coupled quantum dots.
arXiv Detail & Related papers (2022-08-24T12:55:51Z) - Thermally-induced qubit coherence in quantum electromechanics [0.0]
Coherence is the ability of a quantum system to be in a superposition of quantum states.
We show that quantum coherence is created in a composite system solely from the interaction of the parts.
arXiv Detail & Related papers (2022-06-09T13:33:45Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Superconducting quantum many-body circuits for quantum simulation and
computing [0.0]
We discuss how superconducting circuits allow the engineering of a wide variety of interactions.
In particular we focus on strong photon-photon interactions mediated by nonlinear elements.
We discuss future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
arXiv Detail & Related papers (2020-03-18T10:33:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.