論文の概要: DISCO : efficient unsupervised decoding for discrete natural language
problems via convex relaxation
- arxiv url: http://arxiv.org/abs/2107.05380v2
- Date: Tue, 13 Jul 2021 20:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:35:50.934863
- Title: DISCO : efficient unsupervised decoding for discrete natural language
problems via convex relaxation
- Title(参考訳): DISCO : 凸緩和による離散自然言語問題に対する効率的な教師なし復号化
- Authors: Anish Acharya, Rudrajit Das
- Abstract要約: テスト時間デコーディングは,自然言語処理(NLP)問題にまたがるほぼすべての逐次テキスト生成タスクにおいて,ユビキタスなステップである。
我々の主な貢献は、NPハード復号問題に対する連続緩和フレームワークの開発であり、標準1次勾配に基づく効率的なアルゴリズムであるディスコを提案することである。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we study test time decoding; an ubiquitous step in almost all
sequential text generation task spanning across a wide array of natural
language processing (NLP) problems. Our main contribution is to develop a
continuous relaxation framework for the combinatorial NP-hard decoding problem
and propose Disco - an efficient algorithm based on standard first order
gradient based. We provide tight analysis and show that our proposed algorithm
linearly converges to within $\epsilon$ neighborhood of the optima. Finally, we
perform preliminary experiments on the task of adversarial text generation and
show superior performance of Disco over several popular decoding approaches.
- Abstract(参考訳): 本稿では,幅広い自然言語処理(nlp)問題にまたがるほぼ全ての逐次テキスト生成タスクにおけるユビキタスステップであるテスト時間復号法について検討する。
我々の主な貢献は、組合せNPハード復号問題のための連続緩和フレームワークを開発し、標準1次勾配に基づく効率的なアルゴリズムであるディスコを提案することである。
我々は、厳密な解析を行い、提案アルゴリズムがオプティマの$\epsilon$近傍に線形収束することを示す。
最後に, 逆テキスト生成の課題について予備実験を行い, いくつかの一般的な復号法に対してdiscoの優れた性能を示す。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - A Three-Stage Algorithm for the Closest String Problem on Artificial and Real Gene Sequences [39.58317527488534]
ストロースト文字列問題(Closest String Problem)は、与えられた文字列の集合に属するすべての列から最小距離の文字列を見つけることを目的としたNPハード問題である。
本稿では,次の3段階のアルゴリズムを提案する。まず,検索領域を効果的に見つけるために,検索空間を削減するために,新しいアルファベットプルーニング手法を適用する。
第二に、解を見つけるためのビーム探索の変種を用いる。この方法は、部分解の期待距離スコアに基づいて、新たに開発された誘導関数を利用する。
論文 参考訳(メタデータ) (2024-07-17T21:26:27Z) - Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
本稿では,候補アルゴリズムの集合に有効な手法を提案する。
内部レベルでは、対象が与えられた場合、オフ・ザ・アート制約を利用する。
提案手法は,他のアルゴリズムのスコアを大幅に改善する。
論文 参考訳(メタデータ) (2023-05-26T21:49:37Z) - A Sequential Deep Learning Algorithm for Sampled Mixed-integer
Optimisation Problems [0.3867363075280544]
混合整数最適化問題に対する2つの効率的なアルゴリズムを導入,解析する。
両アルゴリズムが最適解に対して有限時間収束を示すことを示す。
3つの数値実験により,これらのアルゴリズムの有効性を定量的に確立する。
論文 参考訳(メタデータ) (2023-01-25T17:10:52Z) - Best-$k$ Search Algorithm for Neural Text Generation [118.02691398555781]
本稿では,品質と多様性のバランスをとる決定論的探索アルゴリズムを提案する。
提案アルゴリズムはパラメータフリーで、軽量で、効率的で、使いやすくなっている。
論文 参考訳(メタデータ) (2022-11-22T00:26:13Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。