論文の概要: Not Quite 'Ask a Librarian': AI on the Nature, Value, and Future of LIS
- arxiv url: http://arxiv.org/abs/2107.05383v1
- Date: Wed, 7 Jul 2021 15:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:26:40.715727
- Title: Not Quite 'Ask a Librarian': AI on the Nature, Value, and Future of LIS
- Title(参考訳): 図書館員らしくない:ai on the nature, value, and future of lis
- Authors: Jesse David Dinneen and Helen Bubinger
- Abstract要約: 我々は,世界最高の言語モデルであるGPT-3について,図書館と情報科学の性質,価値,将来について,15の難問を問う。
我々は、45の異なる反応からハイライトを提示する。それは、格子や似顔絵から、未来の興味深い視点や不安なビジョンまで様々である。
- 参考スコア(独自算出の注目度): 7.1492901819376415
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI language models trained on Web data generate prose that reflects human
knowledge and public sentiments, but can also contain novel insights and
predictions. We asked the world's best language model, GPT-3, fifteen difficult
questions about the nature, value, and future of library and information
science (LIS), topics that receive perennial attention from LIS scholars. We
present highlights from its 45 different responses, which range from platitudes
and caricatures to interesting perspectives and worrisome visions of the
future, thus providing an LIS-tailored demonstration of the current performance
of AI language models. We also reflect on the viability of using AI to forecast
or generate research ideas in this way today. Finally, we have shared the full
response log online for readers to consider and evaluate for themselves.
- Abstract(参考訳): Webデータに基づいてトレーニングされたAI言語モデルは、人間の知識や公共の感情を反映した散文を生成するが、新しい洞察や予測も含んでいる。
世界最高の言語モデルであるgpt-3に,lis学者から長年の注目を集める図書館情報科学(lis)の性質,価値,未来に関する15の難問を質問した。
私たちは45の異なる回答からハイライトを紹介します。それは、格子や似顔絵から、未来の興味深い視点、そして不安なビジョンまで、AI言語モデルの現在のパフォーマンスをLISがカスタマイズしたデモを提供します。
また、この方法でAIを使って研究アイデアを予測したり生成したりする可能性についても考察する。
最後に、読者が自分自身で検討し評価するための全応答ログをオンラインで公開しました。
関連論文リスト
- Decoding AI and Human Authorship: Nuances Revealed Through NLP and Statistical Analysis [0.0]
本研究では,AIが生成したテキストと人間が作成したテキストの微妙な相違について検討する。
本研究は,人文・AI生成テキストに固有の言語特性,創造性パターン,潜在的なバイアスについて検討した。
論文 参考訳(メタデータ) (2024-07-15T18:09:03Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
本稿では、ジェネレーティブAIにおける最近の進歩と技術に関する体系的なレビューと分析について述べる。
生成AIがこれまで行った大きな影響は、大きな言語モデルの開発による言語生成である。
論文は、責任あるAIの原則と、これらの生成モデルの持続可能性と成長に必要な倫理的考察から締めくくられる。
論文 参考訳(メタデータ) (2024-05-17T18:03:59Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
このチュートリアルは、言語モデルを学ぶ人と、興味を持ち、もっと学びたいと思う人とのギャップを狭めることを目的としています。
実験を通して学ぶことができる質問に焦点を当てた科学的視点を提供する。
言語モデルは、現在、その開発に繋がる研究の文脈に置かれています。
論文 参考訳(メタデータ) (2023-11-29T01:19:02Z) - Carpe Diem: On the Evaluation of World Knowledge in Lifelong Language Models [74.81091933317882]
進化するウィキペディアデータベース上でのLMのトレーニングと評価を目的とした,時間的に進化する質問応答ベンチマークであるEvolvingQAを紹介する。
既存の継続的な学習ベースラインが、時代遅れの知識の更新と削除に悩まされていることを明らかにする。
本研究の目的は,実世界の情報の動的性質をモデル化することであり,言語モデルの進化適応性を忠実に評価することである。
論文 参考訳(メタデータ) (2023-11-14T12:12:02Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
本稿では、生のEOデータから使用可能なEOベースの情報への移行を通知し、支援する、重要な科学的ツールとアプローチについて、鳥の視点で説明する。
i)コンピュータビジョン, (ii) 機械学習, (iii) 高度な処理とコンピューティング, (iv) 知識ベースAI, (v) 説明可能なAIと因果推論, (vi) 物理認識モデル, (vii) ユーザ中心のアプローチ, (viii) EOにおけるML技術の大量使用に関する倫理的・社会的問題に関する議論の議論を網羅する。
論文 参考訳(メタデータ) (2023-05-15T07:47:24Z) - Vision-Language Models in Remote Sensing: Current Progress and Future Trends [25.017685538386548]
視覚言語モデルは、画像とその関連するテキスト記述の推論を可能にし、基礎となるセマンティクスのより深い理解を可能にする。
視覚言語モデルは、RS画像の視覚的認識を超えて、意味的関係をモデル化し、画像の自然言語記述を生成することができる。
本稿では,リモートセンシングにおける視覚言語モデルの研究を包括的にレビューする。
論文 参考訳(メタデータ) (2023-05-09T19:17:07Z) - Structured Like a Language Model: Analysing AI as an Automated Subject [0.0]
我々は、大規模言語モデルに対する主観性の意図的な予測は、AIの振る舞いを分析できる別のフレームを生み出すことができると論じる。
我々は、最先端の自然言語処理性能を実現するシステムのリリースにおいて、言語モデルに関する短い歴史を辿る。
批判的メディア手法と精神分析理論が組み合わさって、AI駆動型言語システムの強力な新しい能力を把握するための生産的枠組みを提供すると結論付けている。
論文 参考訳(メタデータ) (2022-12-08T21:58:43Z) - Visual Knowledge Discovery with Artificial Intelligence: Challenges and
Future Directions [5.754786889790288]
統合ビジュアル知識発見は、人工知能/機械学習(AI/ML)と可視化の進歩を組み合わせたものだ。
章に含まれるのは、選択されたAIおよびVisual Analytics論文の拡張バージョンと、関連するシンポジウムである。
我々は、ビジュアルアナリティクス、ビジュアルナレッジディスカバリ、AI/MLの分野における課題と今後の方向性を示し、ビジュアルAI/MLにおける可視化の役割について議論することを目的とする。
論文 参考訳(メタデータ) (2022-05-03T04:17:21Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。