Not Quite 'Ask a Librarian': AI on the Nature, Value, and Future of LIS
- URL: http://arxiv.org/abs/2107.05383v1
- Date: Wed, 7 Jul 2021 15:20:17 GMT
- Title: Not Quite 'Ask a Librarian': AI on the Nature, Value, and Future of LIS
- Authors: Jesse David Dinneen and Helen Bubinger
- Abstract summary: We ask the world's best language model, GPT-3, fifteen difficult questions about the nature, value, and future of library and information science.
We present highlights from its 45 different responses, which range from platitudes and caricatures to interesting perspectives and worrisome visions of the future.
- Score: 7.1492901819376415
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI language models trained on Web data generate prose that reflects human
knowledge and public sentiments, but can also contain novel insights and
predictions. We asked the world's best language model, GPT-3, fifteen difficult
questions about the nature, value, and future of library and information
science (LIS), topics that receive perennial attention from LIS scholars. We
present highlights from its 45 different responses, which range from platitudes
and caricatures to interesting perspectives and worrisome visions of the
future, thus providing an LIS-tailored demonstration of the current performance
of AI language models. We also reflect on the viability of using AI to forecast
or generate research ideas in this way today. Finally, we have shared the full
response log online for readers to consider and evaluate for themselves.
Related papers
- Decoding AI and Human Authorship: Nuances Revealed Through NLP and Statistical Analysis [0.0]
This research explores the nuanced differences in texts produced by AI and those written by humans.
The study investigates various linguistic traits, patterns of creativity, and potential biases inherent in human-written and AI- generated texts.
arXiv Detail & Related papers (2024-07-15T18:09:03Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
This tutorial aims to help narrow the gap between those who study language models and those who are intrigued and want to learn more.
We offer a scientific viewpoint that focuses on questions amenable to study through experimentation.
We situate language models as they are today in the context of the research that led to their development.
arXiv Detail & Related papers (2023-11-29T01:19:02Z) - Carpe Diem: On the Evaluation of World Knowledge in Lifelong Language Models [74.81091933317882]
We introduce EvolvingQA, a temporally evolving question-answering benchmark designed for training and evaluating LMs on an evolving Wikipedia database.
We uncover that existing continual learning baselines suffer from updating and removing outdated knowledge.
Our work aims to model the dynamic nature of real-world information, suggesting faithful evaluations of the evolution-adaptability of language models.
arXiv Detail & Related papers (2023-11-14T12:12:02Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Artificial intelligence to advance Earth observation: : A review of models, recent trends, and pathways forward [60.43248801101935]
This article gives a bird's eye view of the essential scientific tools and approaches informing and supporting the transition from raw EO data to usable EO-based information.
We cover the impact of (i) Computer vision; (ii) Machine learning; (iii) Advanced processing and computing; (iv) Knowledge-based AI; (v) Explainable AI and causal inference; (vi) Physics-aware models; (vii) User-centric approaches; and (viii) the much-needed discussion of ethical and societal issues related to the massive use of ML technologies in EO.
arXiv Detail & Related papers (2023-05-15T07:47:24Z) - Vision-Language Models in Remote Sensing: Current Progress and Future Trends [25.017685538386548]
Vision-language models enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics.
Vision-language models can go beyond visual recognition of RS images, model semantic relationships, and generate natural language descriptions of the image.
This paper provides a comprehensive review of the research on vision-language models in remote sensing.
arXiv Detail & Related papers (2023-05-09T19:17:07Z) - Structured Like a Language Model: Analysing AI as an Automated Subject [0.0]
We argue the intentional fictional projection of subjectivity onto large language models can yield an alternate frame through which AI behaviour can be analysed.
We trace a brief history of language models, culminating in the releases of systems that realise state-of-the-art natural language processing performance.
We conclude that critical media methods and psychoanalytic theory together offer a productive frame for grasping the powerful new capacities of AI-driven language systems.
arXiv Detail & Related papers (2022-12-08T21:58:43Z) - Visual Knowledge Discovery with Artificial Intelligence: Challenges and
Future Directions [5.754786889790288]
Integrated Visual Knowledge Discovery combines advances in Artificial Intelligence/Machine Learning (AI/ML) and visualization.
Chapters included are extended versions of the selected AI and Visual Analytics papers and related symposiums.
We aim to present challenges and future directions within the field of Visual Analytics, Visual Knowledge Discovery and AI/ML, and to discuss the role of visualization in visual AI/ML.
arXiv Detail & Related papers (2022-05-03T04:17:21Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.