Ground State Cooling of an Ultracoherent Electromechanical System
- URL: http://arxiv.org/abs/2107.05552v4
- Date: Mon, 14 Feb 2022 16:04:38 GMT
- Title: Ground State Cooling of an Ultracoherent Electromechanical System
- Authors: Yannick Seis, Thibault Capelle, Eric Langman, Sampo Saarinen, Eric
Planz and Albert Schliesser
- Abstract summary: Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate quantum state.
We introduce an electromechanical system based around a soft-clamped mechanical resonator with an extremely high Q-factor held at very low (30 mK) temperatures.
This paves the way towards exploiting the extremely long coherence times ($t_mathrmcoh>100 ms) offered by such systems for quantum information processing and state conversion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cavity electromechanics relies on parametric coupling between microwave and
mechanical modes to manipulate the mechanical quantum state, and provide a
coherent interface between different parts of hybrid quantum systems. High
coherence of the mechanical mode is of key importance in such applications, in
order to protect the quantum states it hosts from thermal decoherence. Here, we
introduce an electromechanical system based around a soft-clamped mechanical
resonator with an extremely high Q-factor (>$10^9$) held at very low (30 mK)
temperatures. This ultracoherent mechanical resonator is capacitively coupled
to a microwave mode, strong enough to enable ground-state-cooling of the
mechanics ($\bar{n}_\mathrm{min}= 0.76\pm 0.16$). This paves the way towards
exploiting the extremely long coherence times ($t_\mathrm{coh}>100 ms) offered
by such systems for quantum information processing and state conversion.
Related papers
- Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - A squeezed mechanical oscillator with milli-second quantum decoherence [0.0]
We introduce a superconducting circuit optomechanical platform which exhibits a low quantum decoherence.
This allows us to prepare the quantum ground and squeezed states of motion with high fidelity.
We observe the free evolution of mechanical squeezed state, preserving its non-classical nature over milli-second timescales.
arXiv Detail & Related papers (2022-08-27T20:17:24Z) - A quantum electromechanical interface for long-lived phonons [6.050453270663202]
We present an electromechanical system capable of operating in the GHz-frequency band in a silicon-on-insulator platform.
We find the cavity-mechanics system in the quantum ground state by performing sideband thermometry measurements.
arXiv Detail & Related papers (2022-07-22T09:38:40Z) - Nanomechanical resonators with ultra-high-$Q$ perimeter modes [0.0]
A new approach to soft clamping exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices.
Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths.
Our devices make them well-suited for near-field integration with microcavities for quantum optomechanical experiments.
arXiv Detail & Related papers (2021-08-08T11:42:21Z) - Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive
Regime [0.0]
dispersive, radiation-pressure interaction between the mechanical and the electromagnetic modes is typically very weak.
We show that if the interaction is mediated by a Josephson circuit, one can have an effective dynamic corresponding to a huge enhancement of the single-photon optomechanical coupling.
arXiv Detail & Related papers (2021-07-29T20:24:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.