Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive
Regime
- URL: http://arxiv.org/abs/2107.14315v1
- Date: Thu, 29 Jul 2021 20:24:20 GMT
- Title: Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive
Regime
- Authors: Ahmad Shafiei Aporvari, and David Vitali
- Abstract summary: dispersive, radiation-pressure interaction between the mechanical and the electromagnetic modes is typically very weak.
We show that if the interaction is mediated by a Josephson circuit, one can have an effective dynamic corresponding to a huge enhancement of the single-photon optomechanical coupling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cavity optomechanics represents a flexible platform for the implementation of
quantum technologies, useful in particular for the realization of quantum
interfaces, quantum sensors and quantum information processing. However, the
dispersive, radiation-pressure interaction between the mechanical and the
electromagnetic modes is typically very weak, harnessing up to now the
demonstration of interesting nonlinear dynamics and quantum control at the
single photon level. It has already been shown both theoretically and
experimentally that if the interaction is mediated by a Josephson circuit, one
can have an effective dynamic corresponding to a huge enhancement of the
single-photon optomechanical coupling. Here we analyze in detail this
phenomenon in the general case when the cavity mode and the mechanical mode
interact via an off-resonant qubit. Using a Schrieffer-Wolff approximation
treatment, we determine the regime where this tripartite hybrid system behaves
as an effective cavity optomechanical system in the strong coupling regime
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum effects beyond mean-field treatment in quantum optics [5.148894494637909]
Mean-field treatment (MFT) is frequently applied to approximately predict the dynamics of quantum optics systems.
Here, we provide a general and systematic theoretical framework based on the perturbation theory in company with the MFT to capture unanticipated quantum effects.
Our work clearly reveals the attendant quantum effects under mean-field treatment and provides a more precise theoretical framework to describe quantum optics systems.
arXiv Detail & Related papers (2021-11-29T15:45:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - All-optical quantum simulation of ultrastrong optomechanics [0.0]
We present an all-optical scheme to simulate ultrastrong optomechanical coupling based on a Fredkin-type interaction.
Our numerical simulations demonstrate that the enhanced optomechanical coupling can enter the single-photon strong-coupling and even ultrastrong-coupling regimes.
This work will pave the way to quantum simulation of single-photon optomechanical effects with current experimental platforms.
arXiv Detail & Related papers (2021-03-17T06:36:38Z) - Hybrid coupling optomechanically assisted nonreciprocal photon blockade [5.472101264158104]
dissipation coupling of hybrid dissipation and dispersion optomechanical system can induce the coupling between the environment and system.
Cross-Kerr coupling can also be used in a more widely region in quantum information processing and quantum simulation.
arXiv Detail & Related papers (2020-11-30T00:40:28Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.