A new approach to the quantization of the damped harmonic oscillator
- URL: http://arxiv.org/abs/2107.05827v3
- Date: Thu, 15 Jul 2021 03:50:46 GMT
- Title: A new approach to the quantization of the damped harmonic oscillator
- Authors: Matthew J. Blacker, David L. Tilbrook
- Abstract summary: A new approach for constructing Lagrangians for driven and undriven linearly damped systems is proposed.
A new time coordinate is introduced to ensure that the resulting Lagrangian satisfies the Helmholtz conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a new approach for constructing Lagrangians for driven and
undriven linearly damped systems is proposed, by introducing a redefined time
coordinate and an associated coordinate transformation to ensure that the
resulting Lagrangian satisfies the Helmholtz conditions. The approach is
applied to canonically quantize the damped harmonic oscillator and although it
predicts an energy spectrum that decays at the same rate to previous models,
unlike those approaches it recovers the classical critical damping condition,
which determines transitions between energy eigenstates, and is therefore
consistent with the correspondence principle. It is also demonstrated how to
apply the procedure to a driven damped harmonic oscillator.
Related papers
- Quantum-Classical Correspondence in a Quartic Oscillator -- Corrections to Frequency and Bounds for Periodic Motion [0.0]
We take a comparative look at the behavior of quantum and classical quartic anharmonic oscillators.
The associated equation of motion allows us to compute the classical frequency of the oscillation order by order.
We derive a bound for periodicity of such oscillations in both the classical and quantum cases.
arXiv Detail & Related papers (2024-10-13T04:30:39Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quadratic Time-dependent Quantum Harmonic Oscillator [0.0]
We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators.
Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model.
arXiv Detail & Related papers (2022-11-23T19:50:49Z) - Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator [0.0]
We study the time-dependent behaviour of quantum correlations of a system governed by out-of-equilibrium dynamics.
Next, we study a specific case, where the system exhibits chaotic behaviour by computing the quantum Lyapunov from the time-dependent behaviour of OTOC.
arXiv Detail & Related papers (2022-10-03T18:00:02Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Anti-PT-symmetric harmonic oscillator and its relation to the inverted
harmonic oscillator [0.0]
We treat the quantum dynamics of a harmonic oscillator as well as its inverted counterpart in the Schr"odinger picture.
We show that the wavefunctions for this system are normalized in the sense of the pseudo-scalar product.
arXiv Detail & Related papers (2022-04-22T15:54:01Z) - Classical and quantum harmonic oscillators subject to a time dependent
force [0.0]
We address the problem of the quantization of a simple harmonic oscillator perturbed by a time dependent force.
The approach consists of removing the perturbation by a canonical change of coordinates.
To transform between the quantized systems the canonical transformation is implemented as a unitary transformation mapping the states of the perturbed and unperturbed system onto each other.
arXiv Detail & Related papers (2022-04-07T14:13:41Z) - Intrinsic decoherence for the displaced harmonic oscillator [77.34726150561087]
We use the complete solution of the Milburn equation that describes intrinsic decoherence.
We calculate the expectation values of position quadrature, and the number operator in initial coherent and squeezed states.
arXiv Detail & Related papers (2021-12-06T03:15:43Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.