論文の概要: Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication
- arxiv url: http://arxiv.org/abs/2107.06195v1
- Date: Tue, 13 Jul 2021 15:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 14:28:41.284450
- Title: Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication
- Title(参考訳): v2x通信における分散リソース共有のための二重qネットワークを用いたマルチエージェント強化学習における転送学習
- Authors: Hammad Zafar, Zoran Utkovski, Martin Kasparick, Slawomir Stanczak
- Abstract要約: 本稿では,V2X通信ネットワークにおける分散スペクトル共有の問題に対処する。
目的は、V2IおよびV2Vリンクの資源効率の高い共存を提供することである。
- 参考スコア(独自算出の注目度): 24.442174952832108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of decentralized spectrum sharing in
vehicle-to-everything (V2X) communication networks. The aim is to provide
resource-efficient coexistence of vehicle-to-infrastructure(V2I) and
vehicle-to-vehicle(V2V) links. A recent work on the topic proposes a
multi-agent reinforcement learning (MARL) approach based on deep Q-learning,
which leverages a fingerprint-based deep Q-network (DQN) architecture. This
work considers an extension of this framework by combining Double Q-learning
(via Double DQN) and transfer learning. The motivation behind is that Double
Q-learning can alleviate the problem of overestimation of the action values
present in conventional Q-learning, while transfer learning can leverage
knowledge acquired by an expert model to accelerate learning in the MARL
setting. The proposed algorithm is evaluated in a realistic V2X setting, with
synthetic data generated based on a geometry-based propagation model that
incorporates location-specific geographical descriptors of the simulated
environment(outlines of buildings, foliage, and vehicles). The advantages of
the proposed approach are demonstrated via numerical simulations.
- Abstract(参考訳): 本稿では,V2X通信ネットワークにおける分散スペクトル共有の問題に対処する。
目的は、V2IおよびV2Vリンクの資源効率の高い共存を提供することである。
このトピックに関する最近の研究は、指紋に基づく深層Q-network(DQN)アーキテクチャを活用する深層Q-learningに基づくマルチエージェント強化学習(MARL)アプローチを提案する。
この研究は、ダブルQ-ラーニング(Double DQN)とトランスファーラーニング(Transfer Learning)を組み合わせることで、このフレームワークの拡張を検討する。
背景にある動機は、二重Q学習は従来のQ学習に存在する行動値の過大評価の問題を軽減することができる一方で、移行学習は専門家モデルが獲得した知識を活用してMARL設定での学習を加速することができることである。
提案アルゴリズムは,シミュレーション環境(建物,葉,車両のアウトライン)の位置特異的な地理的記述子を組み込んだ幾何学的伝播モデルに基づいて,現実的なV2X設定で評価される。
提案手法の利点は数値シミュレーションにより実証された。
関連論文リスト
- Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications [43.443526528832145]
本稿では,グラフニューラルネットワーク(GNN)と深層強化学習(DRL)を統合する手法を提案する。
通信リンクをノードとする動的グラフを構築することにより、V2V通信における高い成功率を確保することを目指している。
提案手法は,GNNのグローバルな特徴学習能力を維持し,分散ネットワーク展開をサポートする。
論文 参考訳(メタデータ) (2024-07-09T03:14:11Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
資源配分はV2Xネットワークの性能に大きな影響を及ぼす。
リソース割り当てのための既存のアルゴリズムのほとんどは、最適化や機械学習に基づいている。
本稿では,連合型強化学習の枠組みの下で,V2Xネットワークにおける資源配分について検討する。
論文 参考訳(メタデータ) (2023-10-15T15:26:54Z) - Towards Cooperative Federated Learning over Heterogeneous Edge/Fog
Networks [49.19502459827366]
フェデレートラーニング(FL)は、エッジ/フォグネットワーク上で機械学習(ML)モデルをトレーニングするための一般的なテクニックとして推奨されている。
FLの従来の実装は、ネットワーク間協力の可能性を大きく無視してきた。
我々は,デバイス・ツー・デバイス(D2D)とデバイス・ツー・サーバ(D2S)インタラクションに基づいて構築された協調的エッジ/フォグMLパラダイムである協調的連合学習(CFL)を提唱する。
論文 参考訳(メタデータ) (2023-03-15T04:41:36Z) - Enhanced Decentralized Federated Learning based on Consensus in
Connected Vehicles [14.80476265018825]
分散システムにおける機械学習(ML)モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
我々は,C-DFL (Consensus based Decentralized Federated Learning)を導入し,コネクテッドカーにおけるフェデレーションラーニングに取り組む。
論文 参考訳(メタデータ) (2022-09-22T01:21:23Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Online Target Q-learning with Reverse Experience Replay: Efficiently
finding the Optimal Policy for Linear MDPs [50.75812033462294]
我々は,Q-ラーニングの実践的成功と悲観的理論的結果とのギャップを埋める。
本稿では,新しいQ-Rex法とQ-RexDaReを提案する。
Q-Rex は線形 MDP の最適ポリシを効率的に見つけることができる。
論文 参考訳(メタデータ) (2021-10-16T01:47:41Z) - Distributed Learning for Time-varying Networks: A Scalable Design [13.657740129012804]
本稿では,スケーラブルなディープニューラルネットワーク(DNN)設計に基づく分散学習フレームワークを提案する。
学習タスクの置換等価性と不変性を利用することで、異なるスケールのクライアントに対して異なるスケールのDNNを構築することができる。
モデルアグリゲーションはこれらの2つのサブマトリクスに基づいて行うことができ、学習の収束と性能を改善することができる。
論文 参考訳(メタデータ) (2021-07-31T12:44:28Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge Intelligenceは、センサー、通信、コンピューティングコンポーネントを統合し、さまざまな機械学習アプリケーションをサポートする、新興ネットワークアーキテクチャである。
既存の方法は2つの重要な事実を無視している: 1) 異なるモデルがトレーニングデータに不均一な要求を持っている; 2) シミュレーション環境と実環境との間にはミスマッチがある。
本稿では,複数のタスクの最悪の学習性能を最大化する学習中心の無線リソース割り当て方式を提案する。
論文 参考訳(メタデータ) (2020-10-29T06:20:40Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。