論文の概要: Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks
- arxiv url: http://arxiv.org/abs/2410.12521v1
- Date: Wed, 16 Oct 2024 12:59:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:22.061272
- Title: Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks
- Title(参考訳): 深部強化学習を用いた車載ネットワークにおけるスペクトル共有
- Authors: Riya Dinesh Deshpande, Faheem A. Khan, Qasim Zeeshan Ahmed,
- Abstract要約: 本稿では、DQNモデルの有効性を実証し、スペクトル共有効率を向上させるためのいくつかの結果と分析を行った。
SARLモデルとMARLモデルの両方がV2V通信の成功率を示し、トレーニングが進むにつれてRLモデルの累積報酬が最大に達する。
- 参考スコア(独自算出の注目度): 0.14999444543328289
- License:
- Abstract: As the number of devices getting connected to the vehicular network grows exponentially, addressing the numerous challenges of effectively allocating spectrum in dynamic vehicular environment becomes increasingly difficult. Traditional methods may not suffice to tackle this issue. In vehicular networks safety critical messages are involved and it is important to implement an efficient spectrum allocation paradigm for hassle free communication as well as manage the congestion in the network. To tackle this, a Deep Q Network (DQN) model is proposed as a solution, leveraging its ability to learn optimal strategies over time and make decisions. The paper presents a few results and analyses, demonstrating the efficacy of the DQN model in enhancing spectrum sharing efficiency. Deep Reinforcement Learning methods for sharing spectrum in vehicular networks have shown promising outcomes, demonstrating the system's ability to adjust to dynamic communication environments. Both SARL and MARL models have exhibited successful rates of V2V communication, with the cumulative reward of the RL model reaching its maximum as training progresses.
- Abstract(参考訳): 車両ネットワークに接続する機器の数が指数関数的に増加するにつれて、動的車両環境においてスペクトルを効果的に割り当てるという多くの課題に対処することがますます困難になっている。
従来の方法はこの問題に対処するのに十分ではないかもしれない。
車両ネットワークでは、安全クリティカルメッセージが関与し、ネットワーク内の混雑を管理するとともに、ハードルフリー通信のための効率的なスペクトル割り当てパラダイムを実装することが重要である。
これを解決するため、Deep Q Network(DQN)モデルがソリューションとして提案され、時間とともに最適な戦略を学習し、意思決定を行う能力を活用する。
本稿では、DQNモデルの有効性を実証し、スペクトル共有効率を向上させるためのいくつかの結果と分析を行った。
車両ネットワークにおけるスペクトル共有のための深層強化学習手法は,動的な通信環境に適応するシステムの能力を示す,有望な結果を示している。
SARLモデルとMARLモデルの両方がV2V通信の成功率を示し、トレーニングが進むにつれてRLモデルの累積報酬が最大に達する。
関連論文リスト
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning [10.964841612918539]
可変量子回路(VQC)を用いた多目的強化学習(MORL)フレームワークを開発し、車載ネットワーク(VNet)における効率的なネットワーク選択と自律運転ポリシーを特徴付ける。
従来のディープQネットワーク(DQN)と比較して,コンバージェンス率と報酬の両面で顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-05-29T10:57:25Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
交通信号の制御における深部強化学習(RL)アプローチの堅牢性について検討する。
欠落したデータに対して,近年の手法が脆弱なままであることを示す。
政策アンサンブルによる分散強化学習とバニラ強化学習の組み合わせを提案する。
論文 参考訳(メタデータ) (2023-06-02T21:30:44Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Scalable Traffic Signal Controls using Fog-Cloud Based Multiagent
Reinforcement Learning [0.8258451067861933]
この研究は、要求されるインフラの数を削減できるスケーラブルなTSCモデルを提案するための最近の研究に基づいている。
提案モデルの有効性を実証するため,ケーススタディを実施し,その結果に有望な結果が得られた。
論文 参考訳(メタデータ) (2021-10-11T19:06:02Z) - Cellular traffic offloading via Opportunistic Networking with
Reinforcement Learning [0.5758073912084364]
本稿では,Reinforcement Learningフレームワークに基づく適応型オフロードソリューションを提案する。
Actor-Critic と Q-Learning の2つのよく知られた学習アルゴリズムの性能を評価し比較する。
我々のソリューションは、他の最先端のアプローチよりも高いレベルのオフロードを実現する。
論文 参考訳(メタデータ) (2021-10-01T13:34:12Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
そこで本研究では,注文発送のための深層強化学習に基づくソリューションを提案する。
DiDiの配車プラットフォーム上で大規模なオンラインA/Bテストを実施している。
その結果,CVNetは近年提案されているディスパッチ手法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2021-06-08T16:27:04Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
適応的な交通信号制御のスケーリングには、状態と行動空間を扱う必要がある。
本稿では,グラフ畳み込みネットワークに基づくインダクティブグラフ強化学習(IG-RL)を紹介する。
我々のモデルは、新しい道路網、交通分布、交通体制に一般化することができる。
論文 参考訳(メタデータ) (2020-03-06T17:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。