論文の概要: Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications
- arxiv url: http://arxiv.org/abs/2407.06518v1
- Date: Tue, 9 Jul 2024 03:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:25:27.814225
- Title: Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications
- Title(参考訳): V2X通信のためのグラフニューラルネットワークと深層強化学習に基づく資源配分
- Authors: Maoxin Ji, Qiong Wu, Pingyi Fan, Nan Cheng, Wen Chen, Jiangzhou Wang, Khaled B. Letaief,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)と深層強化学習(DRL)を統合する手法を提案する。
通信リンクをノードとする動的グラフを構築することにより、V2V通信における高い成功率を確保することを目指している。
提案手法は,GNNのグローバルな特徴学習能力を維持し,分散ネットワーク展開をサポートする。
- 参考スコア(独自算出の注目度): 43.443526528832145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving landscape of Internet of Vehicles (IoV) technology, Cellular Vehicle-to-Everything (C-V2X) communication has attracted much attention due to its superior performance in coverage, latency, and throughput. Resource allocation within C-V2X is crucial for ensuring the transmission of safety information and meeting the stringent requirements for ultra-low latency and high reliability in Vehicle-to-Vehicle (V2V) communication. This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge. By constructing a dynamic graph with communication links as nodes and employing the Graph Sample and Aggregation (GraphSAGE) model to adapt to changes in graph structure, the model aims to ensure a high success rate for V2V communication while minimizing interference on Vehicle-to-Infrastructure (V2I) links, thereby ensuring the successful transmission of V2V link information and maintaining high transmission rates for V2I links. The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment, allowing vehicles to extract low-dimensional features that include structural information from the graph network based on local observations and to make independent resource allocation decisions. Simulation results indicate that the introduction of GNN, with a modest increase in computational load, effectively enhances the decision-making quality of agents, demonstrating superiority to other methods. This study not only provides a theoretically efficient resource allocation strategy for V2V and V2I communications but also paves a new technical path for resource management in practical IoV environments.
- Abstract(参考訳): Internet of Vehicles (IoV) 技術が急速に発展する中で,C-V2X (Cellular Vehicle-to-Everything) 通信が注目されている。
C-V2X内の資源配分は、安全情報の伝達を確実にし、V2V通信における超低レイテンシと高信頼性の厳しい要求を満たすために重要である。
本稿では,グラフニューラルネットワーク(GNN)と深層強化学習(DRL)を統合する手法を提案する。
グラフ構造の変化に対応するためにグラフサンプル・アグリゲーション(Graph Sample and Aggregation, GraphSAGE)モデルを用いて通信リンクをノードとして構築することにより,V2Vリンクの干渉を最小限に抑えながら,V2V通信における高い成功率を確保することを目的としている。
提案手法は,GNNのグローバルな特徴学習能力を維持し,分散ネットワーク展開をサポートし,局所観測に基づいてグラフネットワークから構造情報を含む低次元特徴を抽出し,独立した資源配分決定を行う。
シミュレーションの結果、GNNの導入は、計算負荷がわずかに増加し、エージェントの意思決定品質が効果的に向上し、他の方法よりも優れていることが示唆された。
本研究は,V2VおよびV2I通信における理論的に効率的な資源配分戦略を提供するだけでなく,実用IoV環境における資源管理のための新たな技術経路を開拓する。
関連論文リスト
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
6G対応のVehicular Metaversesでは、車両は物理的車両のデジタルレプリカとして機能するVT(Vine Twins)によって表現される。
VTタスクはリソース集約であり、高速処理のために地上基地局(BS)にオフロードする必要がある。
地上BSとUAV間の資源配分を最適化する学習型修正第2バイド(MSB)オークション機構を提案する。
論文 参考訳(メタデータ) (2024-11-01T04:34:54Z) - Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks [0.14999444543328289]
本稿では、DQNモデルの有効性を実証し、スペクトル共有効率を向上させるためのいくつかの結果と分析を行った。
SARLモデルとMARLモデルの両方がV2V通信の成功率を示し、トレーニングが進むにつれてRLモデルの累積報酬が最大に達する。
論文 参考訳(メタデータ) (2024-10-16T12:59:59Z) - Joint Optimization of Age of Information and Energy Consumption in NR-V2X System based on Deep Reinforcement Learning [13.62746306281161]
5Gニューラジオ(NR)技術に基づくV2X仕様。
モード2サイドリンク(SL)通信はLTE-V2Xのモード4に似ており、車両間の直接通信を可能にする。
この影響を緩和するために 干渉キャンセル法が使われています。
論文 参考訳(メタデータ) (2024-07-11T12:54:38Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
車両間通信(V2X)方式を考慮したRIS支援車両インターネット(IoV)を提案する。
車両間リンク(V2I)のタイムラインと車両間リンク(V2V)の安定性を改善するため,情報量(AoI)モデルとペイロード伝達確率モデルを導入する。
論文 参考訳(メタデータ) (2024-06-17T06:16:07Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication [24.442174952832108]
本稿では,V2X通信ネットワークにおける分散スペクトル共有の問題に対処する。
目的は、V2IおよびV2Vリンクの資源効率の高い共存を提供することである。
論文 参考訳(メタデータ) (2021-07-13T15:50:10Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
デバイス間通信(D2D)を用いたマルチチャネルセルシステムにおいて,リソース割り当ての最適化のためのフレームワークを提案する。
任意のチャネル条件に対する最適な資源配分戦略をディープニューラルネットワーク(DNN)モデルにより近似する深層学習(DL)フレームワークを提案する。
シミュレーションの結果,提案手法のリアルタイム性能を低速で実現できることが確認された。
論文 参考訳(メタデータ) (2020-11-25T14:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。