Measuring the joint spectral mode of photon pairs using intensity
interferometry
- URL: http://arxiv.org/abs/2107.06244v2
- Date: Mon, 10 Jan 2022 16:12:18 GMT
- Title: Measuring the joint spectral mode of photon pairs using intensity
interferometry
- Authors: G. S. Thekkadath and B. A. Bell and R. B. Patel and M. S. Kim and I.
A. Walmsley
- Abstract summary: We present and experimentally demonstrate a scheme based on intensity interferometry to measure the joint spectral mode of photon pairs.
Our scheme does not require phase stability, nonlinearities, or spectral shaping, and thus is an experimentally simple way of measuring the modal structure of quantum light.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to manipulate and measure the time-frequency structure of quantum
light is useful for information processing and metrology. Measuring this
structure is also important when developing quantum light sources with high
modal purity that can interfere with other independent sources. Here, we
present and experimentally demonstrate a scheme based on intensity
interferometry to measure the joint spectral mode of photon pairs produced by
spontaneous parametric down-conversion. We observe correlations in the spectral
phase of the photons due to chirp in the pump. We show that our scheme can be
combined with stimulated emission tomography to quickly measure their mode
using bright classical light. Our scheme does not require phase stability,
nonlinearities, or spectral shaping, and thus is an experimentally simple way
of measuring the modal structure of quantum light.
Related papers
- Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.