Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand
Forecasting
- URL: http://arxiv.org/abs/2107.06268v1
- Date: Tue, 13 Jul 2021 17:51:21 GMT
- Title: Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand
Forecasting
- Authors: Florian Ziel
- Abstract summary: We present a winning method of the IEEE DataPort Competition on Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm.
The day-ahead load forecasting approach is based on online forecast combination of multiple point prediction models.
The approach is flexible and can quickly adopt to new energy system situations as they occurred during and after COVID-19 shutdowns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a winning method of the IEEE DataPort Competition on Day-Ahead
Electricity Demand Forecasting: Post-COVID Paradigm. The day-ahead load
forecasting approach is based on online forecast combination of multiple point
prediction models. It contains four steps: i) data cleaning and preprocessing,
ii) a holiday adjustment procedure, iii) training of individual forecasting
models, iv) forecast combination by smoothed Bernstein Online Aggregation
(BOA). The approach is flexible and can quickly adopt to new energy system
situations as they occurred during and after COVID-19 shutdowns. The pool of
individual prediction models ranges from rather simple time series models to
sophisticated models like generalized additive models (GAMs) and
high-dimensional linear models estimated by lasso. They incorporate
autoregressive, calendar and weather effects efficiently. All steps contain
novel concepts that contribute to the excellent forecasting performance of the
proposed method. This holds particularly for the holiday adjustment procedure
and the fully adaptive smoothed BOA approach.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Continuous Ensemble Weather Forecasting with Diffusion models [10.730406954385927]
Continuous Ensemble Forecasting is a novel and flexible method for sampling ensemble forecasts in diffusion models.
It can generate temporally consistent ensemble trajectories completely in parallel, with no autoregressive steps.
We demonstrate that the method achieves competitive results for global weather forecasting with good probabilistic properties.
arXiv Detail & Related papers (2024-10-07T18:51:23Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines and enhanced with autoregressive post-processing.
The proposed model is evaluated on load data from 24 European countries.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Fine-grained Forecasting Models Via Gaussian Process Blurring Effect [6.472434306724611]
Time series forecasting is a challenging task due to the existence of complex and dynamic temporal dependencies.
Using more training data is one way to improve the accuracy, but this source is often limited.
We are building on successful denoising approaches for image generation by advocating for an end-to-end forecasting and denoising paradigm.
arXiv Detail & Related papers (2023-12-21T20:25:16Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach [3.7565501074323224]
This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
arXiv Detail & Related papers (2023-04-09T20:30:10Z) - An Accurate and Fully-Automated Ensemble Model for Weekly Time Series
Forecasting [9.617563440471928]
We propose a forecasting method in this domain, leveraging state-of-the-art forecasting techniques.
We consider different meta-learning architectures, algorithms, and base model pools.
Our proposed method consistently outperforms a set of benchmarks and state-of-the-art weekly forecasting models.
arXiv Detail & Related papers (2020-10-16T04:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.