Optimal starting point for time series forecasting
- URL: http://arxiv.org/abs/2409.16843v2
- Date: Sun, 09 Feb 2025 03:30:28 GMT
- Title: Optimal starting point for time series forecasting
- Authors: Yiming Zhong, Yinuo Ren, Guangyao Cao, Feng Li, Haobo Qi,
- Abstract summary: We introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) for optimal forecasting.
The proposed approach can determine the optimal starting point (OSP) of the time series and then enhance the prediction performances of the base forecasting models.
Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete time series dataset.
- Score: 1.9937737230710553
- License:
- Abstract: Recent advances on time series forecasting mainly focus on improving the forecasting models themselves. However, when the time series data suffer from potential structural breaks or concept drifts, the forecasting performance might be significantly reduced. In this paper, we introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) for optimal forecasting, which can be combined with existing time series forecasting models. By adjusting the sequence length via leveraging the XGBoost and LightGBM models, the proposed approach can determine the optimal starting point (OSP) of the time series and then enhance the prediction performances of the base forecasting models. To illustrate the effectiveness of the proposed approach, comprehensive empirical analysis have been conducted on the M4 dataset and other real world datasets. Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete time series dataset. Moreover, comparison results reveals that combining our approach with existing forecasting models can achieve better prediction accuracy, which also reflect the advantages of the proposed approach.
Related papers
- Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Deep Non-Parametric Time Series Forecaster [19.800783133682955]
The proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy.
We develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series.
arXiv Detail & Related papers (2023-12-22T12:46:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Long Range Probabilistic Forecasting in Time-Series using High Order
Statistics [19.12411040726229]
We present a novel probabilistic forecasting method that produces forecasts coherent in terms of base level and predicted aggregate statistics.
We show that our method improves forecast performance across both base level and unseen aggregates post inference on real datasets ranging three diverse domains.
arXiv Detail & Related papers (2021-11-05T11:10:35Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.