論文の概要: End-to-end Ultrasound Frame to Volume Registration
- arxiv url: http://arxiv.org/abs/2107.06449v1
- Date: Wed, 14 Jul 2021 01:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 01:11:41.581981
- Title: End-to-end Ultrasound Frame to Volume Registration
- Title(参考訳): ボリューム登録のための終端超音波フレーム
- Authors: Hengtao Guo, Xuanang Xu, Sheng Xu, Bradford J. Wood, Pingkun Yan
- Abstract要約: 2次元および3次元の登録のためのエンドツーエンドのフレーム・ツー・ボリューム登録ネットワーク(FVR-Net)を提案する。
提案モデルでは, リアルタイム介入指導において, 高い競争力のある登録精度で優れた効率性を示す。
- 参考スコア(独自算出の注目度): 9.738024231762465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fusing intra-operative 2D transrectal ultrasound (TRUS) image with
pre-operative 3D magnetic resonance (MR) volume to guide prostate biopsy can
significantly increase the yield. However, such a multimodal 2D/3D registration
problem is a very challenging task. In this paper, we propose an end-to-end
frame-to-volume registration network (FVR-Net), which can efficiently bridge
the previous research gaps by aligning a 2D TRUS frame with a 3D TRUS volume
without requiring hardware tracking. The proposed FVR-Net utilizes a
dual-branch feature extraction module to extract the information from TRUS
frame and volume to estimate transformation parameters. We also introduce a
differentiable 2D slice sampling module which allows gradients backpropagating
from an unsupervised image similarity loss for content correspondence learning.
Our model shows superior efficiency for real-time interventional guidance with
highly competitive registration accuracy.
- Abstract(参考訳): 前立腺生検では術中2次元経直腸超音波(TRUS)画像と術前3次元磁気共鳴(MR)容積を併用することにより,収率を有意に高めることができる。
しかし、このようなマルチモーダル2D/3D登録問題は非常に難しい課題である。
本稿では,2次元TRUSフレームを3次元TRUSボリュームに整列させることで,ハードウェアトラッキングを必要とせずに,従来の研究ギャップを効率的に埋めることのできる,エンドツーエンドのフレーム・ツー・ボリューム登録ネットワーク(FVR-Net)を提案する。
The proposed FVR-Net using a dual-branch feature extract module to extract the information from TRUS frame and volume to estimated transformation parameters。
また,コンテンツ対応学習のための教師なし画像類似度損失から逆伝播可能な2次元スライスサンプリングモジュールを提案する。
本モデルは,高い競合性を有するリアルタイム介入指導に優れた効率を示す。
関連論文リスト
- Rigid Single-Slice-in-Volume registration via rotation-equivariant 2D/3D feature matching [3.041742847777409]
本研究では,1つの2次元スライスと対応する3次元ボリュームを一致させる自己教師付き2D/3D登録手法を提案する。
NSCLC-Radiomics CTおよびKIRBY21 MRIデータセット上で,提案したスライス・イン・ボリューム登録の堅牢性を示す。
論文 参考訳(メタデータ) (2024-10-24T12:24:27Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
CMR SSFP画像からの複数方向からの相補的変位情報を組み合わせた3次元心筋ひずみ推定法を提案する。
商用ソフトウェア(セグメント,メドビソ)に実装された2次元非剛性登録アルゴリズムを用いて,短軸,4角,2角のビューのセットを登録する。
次に, 運動3方向の補間関数を作成し, 患者固有の左室の四面体メッシュ表現を変形させる。
論文 参考訳(メタデータ) (2020-09-25T22:47:50Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。