Towards a Geometrization of Quantum Complexity and Chaos
- URL: http://arxiv.org/abs/2107.06557v1
- Date: Wed, 14 Jul 2021 08:43:07 GMT
- Title: Towards a Geometrization of Quantum Complexity and Chaos
- Authors: Davide Rattacaso, Patrizia Vitale, and Alioscia Hamma
- Abstract summary: We show how the restriction of the Quantum Geometric to manifold of states that can be generated through local interactions provides a new tool to understand the consequences of locality in physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we show how the restriction of the Quantum Geometric Tensor to
manifolds of states that can be generated through local interactions provides a
new tool to understand the consequences of locality in physics. After a review
of a first result in this context, consisting in a geometric out-of-equilibrium
extension of the quantum phase transitions, we argue the opportunity and the
usefulness to exploit the Quantum Geometric Tensor to geometrize quantum chaos
and complexity.
Related papers
- Benchmarking quantum chaos from geometric complexity [0.23436632098950458]
We consider a new method to study geometric complexity for interacting non-Gaussian quantum mechanical systems.
Within some limitations, geometric complexity can indeed be a good indicator of quantum chaos.
arXiv Detail & Related papers (2024-10-24T14:04:58Z) - Quantum geometry embedded in unitarity of evolution: revealing its impacts as quantum oscillation and dephasing in spin resonance and crystal bands [0.29127054707887967]
We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution.
We exemplify geometric observables, such as oscillation, dephasing, in spin and band scenarios.
arXiv Detail & Related papers (2024-06-22T13:16:51Z) - A Geometry of entanglement and entropy [0.7373617024876725]
We provide a comprehensive overview of entanglement, highlighting its crucial role in quantum mechanics.
We discuss various methods for quantifying and characterizing entanglement through a geometric perspective.
An example of entanglement as an indispensable resource for the task of state teleportation is presented at the end.
arXiv Detail & Related papers (2024-02-24T18:26:32Z) - Non-adiabatic holonomies as photonic quantum gates [36.136619420474766]
We present the quantum-optical realization of non-adiabatic holonomies that can be used as single-qubit quantum gates.
The inherent non-adiabaticity of the structures paves the way for unprecedented miniaturization.
arXiv Detail & Related papers (2024-01-08T16:44:45Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Geometric and holonomic quantum computation [1.4644151041375417]
Quantum gates based on geometric phases and quantum holonomies possess built-in resilience to certain kinds of errors.
This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates.
arXiv Detail & Related papers (2021-10-07T16:31:54Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.