論文の概要: DVMN: Dense Validity Mask Network for Depth Completion
- arxiv url: http://arxiv.org/abs/2107.06709v1
- Date: Wed, 14 Jul 2021 13:57:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-15 14:12:16.143114
- Title: DVMN: Dense Validity Mask Network for Depth Completion
- Title(参考訳): DVMN:Dense Validity Mask Network for Depth Completion
- Authors: Laurenz Reichardt, Patrick Mangat, Oliver Wasenm\"uller
- Abstract要約: スパース深度マップから高密度かつ有効な情報を集めることに焦点を当てたガイド付き畳み込みニューラルネットワークを開発した。
我々は,KITTI深度補完ベンチマークを用いてDense Validity Mask Network (DVMN) を評価し,その結果を報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR depth maps provide environmental guidance in a variety of applications.
However, such depth maps are typically sparse and insufficient for complex
tasks such as autonomous navigation. State of the art methods use image guided
neural networks for dense depth completion. We develop a guided convolutional
neural network focusing on gathering dense and valid information from sparse
depth maps. To this end, we introduce a novel layer with spatially variant and
content-depended dilation to include additional data from sparse input.
Furthermore, we propose a sparsity invariant residual bottleneck block. We
evaluate our Dense Validity Mask Network (DVMN) on the KITTI depth completion
benchmark and achieve state of the art results. At the time of submission, our
network is the leading method using sparsity invariant convolution.
- Abstract(参考訳): LiDAR深度マップは様々な用途で環境ガイダンスを提供する。
しかし、このような深度マップは通常、自律的なナビゲーションのような複雑なタスクには不十分である。
最先端の手法は、画像誘導ニューラルネットワークを用いて、深い奥行きを完遂する。
スパース深度マップから高密度かつ有効な情報を集めることに焦点を当てたガイド付き畳み込みニューラルネットワークを開発した。
そこで本稿では,空間的変異とコンテンツ依存拡張を有する新しい層を導入し,スパース入力からの付加データを含める。
さらに,スパーシティ不変残差ボトルネックブロックを提案する。
我々は,KITTI深度補完ベンチマークを用いてDense Validity Mask Network (DVMN) を評価し,その結果を報告する。
提案時点では,本ネットワークはスパーシティ不変畳み込みを用いた指導的手法である。
関連論文リスト
- GAC-Net_Geometric and attention-based Network for Depth Completion [10.64600095082433]
本稿では,チャネルアテンション機構と3次元グローバル特徴知覚(CGA-Net)を組み合わせたディープコンプリートネットワークを提案する。
KITTI深度補完データセットの実験により、CGA-Netは深度マップの予測精度を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2025-01-14T10:24:20Z) - Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
奥行き完了のための既存の手法は、厳密に制約された設定で動作する。
単眼深度推定の進歩に触発されて,画像条件の深度マップ生成として深度補完を再構成した。
Marigold-DCは、単分子深度推定のための事前訓練された潜伏拡散モデルを構築し、試験時間ガイダンスとして深度観測を注入する。
論文 参考訳(メタデータ) (2024-12-18T00:06:41Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
本稿では,新しいエッジガイド深度推定ネットワーク(EGD-Net)を提案する。
特に、軽量なエンコーダデコーダアーキテクチャから始め、エッジガイダンスブランチを組み込む。
コンテクスト情報とエッジアテンション特徴を集約するために,トランスフォーマーをベースとした機能アグリゲーションモジュールを設計する。
論文 参考訳(メタデータ) (2022-09-29T14:45:47Z) - 3DVNet: Multi-View Depth Prediction and Volumetric Refinement [68.68537312256144]
3DVNetは、新しいマルチビューステレオ(MVS)深度予測法である。
私たちのキーとなるアイデアは、粗い深度予測を反復的に更新する3Dシーンモデリングネットワークを使用することです。
本手法は, 深度予測と3次元再構成の両指標において, 最先端の精度を超えることを示す。
論文 参考訳(メタデータ) (2021-12-01T00:52:42Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
本稿では,軽量で密結合の深い深度ネットワークと視覚慣性オドメトリーシステムを提案する。
我々は、初期深度予測の精度を高めるために、以前にVIOから切り離されたスパース特徴を持つネットワークを提供する。
本稿では,ネットワークとコードヤコビアンでのみGPUアクセラレーションを活用しながら,シングルスレッド実行でリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-12-18T09:42:54Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
自己教師付き単分子深度補完のための新しいアルゴリズムを提案する。
提案手法は,深度ラベルを含まない疎深度測定とそれに対応する単眼ビデオシーケンスのみを必要とするニューラルネットワークのトレーニングに基づく。
我々の自己監督アルゴリズムは、テクスチャのない領域、光沢のない透明な表面、非ランバートの表面、動く人々、より長く多様な深度範囲、複雑なエゴモーションによって捉えられたシーンを含む屋内環境に挑戦するために設計されている。
論文 参考訳(メタデータ) (2020-11-10T08:55:07Z) - Deformable spatial propagation network for depth completion [2.5306673456895306]
本稿では,各画素に対して異なる受容場と親和性行列を適応的に生成する変形可能な空間伝搬ネットワーク(DSPN)を提案する。
これにより、ネットワークは伝播のためのより少ないがより関連性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2020-07-08T16:39:50Z) - Guiding Monocular Depth Estimation Using Depth-Attention Volume [38.92495189498365]
本研究では,特に屋内環境に広く分布する平面構造を優先するための奥行き推定法を提案する。
2つのポピュラーな屋内データセットであるNYU-Depth-v2とScanNetの実験により,本手法が最先端の深度推定結果を実現することを示す。
論文 参考訳(メタデータ) (2020-04-06T15:45:52Z) - Depth Edge Guided CNNs for Sparse Depth Upsampling [18.659087667114274]
ガイドされたスパース深度アップサンプリングは、アライメントされた高解像度カラー画像がガイダンスとして与えられるとき、不規則にサンプリングされたスパース深度マップをアップサンプリングすることを目的としている。
奥行き画像を用いたスパース・不規則深度画像から深度を復元するためのガイド付き畳み込み層を提案する。
実世界の屋内および合成屋外データセット上で,本手法を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2020-03-23T08:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。