論文の概要: GAC-Net_Geometric and attention-based Network for Depth Completion
- arxiv url: http://arxiv.org/abs/2501.07988v1
- Date: Tue, 14 Jan 2025 10:24:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:49.851962
- Title: GAC-Net_Geometric and attention-based Network for Depth Completion
- Title(参考訳): GAC-Net_Geometric and attention-based Network for Depth Completion
- Authors: Kuang Zhu, Xingli Gan, Min Sun,
- Abstract要約: 本稿では,チャネルアテンション機構と3次元グローバル特徴知覚(CGA-Net)を組み合わせたディープコンプリートネットワークを提案する。
KITTI深度補完データセットの実験により、CGA-Netは深度マップの予測精度を大幅に向上できることが示された。
- 参考スコア(独自算出の注目度): 10.64600095082433
- License:
- Abstract: Depth completion is a key task in autonomous driving, aiming to complete sparse LiDAR depth measurements into high-quality dense depth maps through image guidance. However, existing methods usually treat depth maps as an additional channel of color images, or directly perform convolution on sparse data, failing to fully exploit the 3D geometric information in depth maps, especially with limited performance in complex boundaries and sparse areas. To address these issues, this paper proposes a depth completion network combining channel attention mechanism and 3D global feature perception (CGA-Net). The main innovations include: 1) Utilizing PointNet++ to extract global 3D geometric features from sparse depth maps, enhancing the scene perception ability of low-line LiDAR data; 2) Designing a channel-attention-based multimodal feature fusion module to efficiently integrate sparse depth, RGB images, and 3D geometric features; 3) Combining residual learning with CSPN++ to optimize the depth refinement stage, further improving the completion quality in edge areas and complex scenes. Experiments on the KITTI depth completion dataset show that CGA-Net can significantly improve the prediction accuracy of dense depth maps, achieving a new state-of-the-art (SOTA), and demonstrating strong robustness to sparse and complex scenes.
- Abstract(参考訳): 深度完了は自動運転における重要な課題であり、画像誘導による高品質の高密度深度マップへの疎度LiDAR深度測定の完了を目的としている。
しかし、既存の手法は通常、深度マップをカラー画像の追加チャネルとして扱うか、あるいはスパースデータに直接畳み込みを行い、特に複雑な境界やスパース領域での限られた性能で、深度マップの3次元幾何学的情報を完全に活用することができない。
本稿では,チャネルアテンション機構と3次元グローバル特徴知覚(CGA-Net)を組み合わせたディープ・コンプリート・ネットワークを提案する。
主なイノベーションは以下のとおりである。
1)PointNet++を用いて、疎深度マップからグローバルな3次元幾何学的特徴を抽出し、低線LiDARデータのシーン認識能力を向上する。
2) 疎深度・RGB画像・3次元幾何学的特徴を効率的に統合するチャンネルアテンションに基づくマルチモーダル特徴融合モジュールの設計
3) 残差学習とCSPN++を組み合わせることで, 深度改善の段階を最適化し, エッジ領域や複雑なシーンの完成度を向上する。
KITTI深度補完データセットの実験では、CGA-Netは深度マップの予測精度を大幅に向上し、新しい最先端(SOTA)を実現し、スパースで複雑なシーンに対して強い堅牢性を示す。
関連論文リスト
- Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution [55.9977636042469]
ビット深度圧縮は、微妙な変化のある領域で均一な深度表現を生成し、詳細情報の回復を妨げる。
密集したランダムノイズは、シーンのグローバルな幾何学的構造を推定する精度を低下させる。
圧縮深度マップ超解像のための新しいフレームワークGDNetを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:37:30Z) - A Two-Stage Masked Autoencoder Based Network for Indoor Depth Completion [10.519644854849098]
室内深度補完のための2段階トランスフォーマーネットワークを提案する。
提案するネットワークは,Matterport3Dデータセット上での最先端性能を実現する。
また, 深度完了作業の重要性を検証するため, 室内3次元再構成に本手法を適用した。
論文 参考訳(メタデータ) (2024-06-14T07:42:27Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
本稿では,3次元の知覚的特徴と多視点幾何整合性を利用して,高精度な自己監督深度補完法を提案する。
NYU-Depthv2 と VOID のベンチマークデータセットを用いた実験により,提案モデルが最先端の深度補完性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-23T14:19:56Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - 3DVNet: Multi-View Depth Prediction and Volumetric Refinement [68.68537312256144]
3DVNetは、新しいマルチビューステレオ(MVS)深度予測法である。
私たちのキーとなるアイデアは、粗い深度予測を反復的に更新する3Dシーンモデリングネットワークを使用することです。
本手法は, 深度予測と3次元再構成の両指標において, 最先端の精度を超えることを示す。
論文 参考訳(メタデータ) (2021-12-01T00:52:42Z) - DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion
Network [3.1447111126464997]
本稿では,DenseLiDARを提案する。
単純な形態的操作から得られた高密度な擬似深度マップを利用してネットワークを誘導する。
我々のモデルは50Hzのフレームレートで最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2021-08-28T14:18:29Z) - A Novel 3D-UNet Deep Learning Framework Based on High-Dimensional
Bilateral Grid for Edge Consistent Single Image Depth Estimation [0.45880283710344055]
3DBG-UNetと呼ばれるバイラテラルグリッドベースの3D畳み込みニューラルネットワークは、UNetsでコンパクトな3D二元格子を符号化することで、高次元の特徴空間をパラメータ化する。
別の新しい3DBGES-UNetモデルは、3DBG-UNetを統合して1つのカラービューの正確な深度マップを推測するものである。
論文 参考訳(メタデータ) (2021-05-21T04:53:14Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
2Dおよび3Dの関節の特徴を抽出することを学ぶシンプルで効果的なニューラルネットワークブロックを設計します。
具体的には、画像画素に2D畳み込みと3D点に連続畳み込みを施した2つのドメイン固有のサブネットワークから構成される。
論文 参考訳(メタデータ) (2020-12-22T22:58:29Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
深度補正のための新しい大域的幾何制約を提案する。
低次元部分空間上によく配置される深さ写像を仮定することにより、高密度深度写像は全解像度の主深度基底の重み付け和で近似することができる。
論文 参考訳(メタデータ) (2020-12-02T11:57:37Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。