BiSTF: Bilateral-Branch Self-Training Framework for Semi-Supervised
Large-scale Fine-Grained Recognition
- URL: http://arxiv.org/abs/2107.06768v1
- Date: Wed, 14 Jul 2021 15:28:54 GMT
- Title: BiSTF: Bilateral-Branch Self-Training Framework for Semi-Supervised
Large-scale Fine-Grained Recognition
- Authors: Hao Chang, Guochen Xie, Jun Yu, Qiang Ling
- Abstract summary: Semi-supervised Fine-Grained Recognition is a challenge task due to data imbalance, high interclass similarity and domain mismatch.
We propose Bilateral-Branch Self-Training Framework (BiSTF) to improve existing semi-balanced and domain-shifted fine-grained data.
We show BiSTF outperforms the existing state-of-the-art SSL on Semi-iNat dataset.
- Score: 28.06659482245647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised Fine-Grained Recognition is a challenge task due to the
difficulty of data imbalance, high inter-class similarity and domain mismatch.
Recent years, this field has witnessed great progress and many methods has
gained great performance. However, these methods can hardly generalize to the
large-scale datasets, such as Semi-iNat, as they are prone to suffer from noise
in unlabeled data and the incompetence for learning features from imbalanced
fine-grained data. In this work, we propose Bilateral-Branch Self-Training
Framework (BiSTF), a simple yet effective framework to improve existing
semi-supervised learning methods on class-imbalanced and domain-shifted
fine-grained data. By adjusting the update frequency through stochastic epoch
update, BiSTF iteratively retrains a baseline SSL model with a labeled set
expanded by selectively adding pseudo-labeled samples from an unlabeled set,
where the distribution of pseudo-labeled samples are the same as the labeled
data. We show that BiSTF outperforms the existing state-of-the-art SSL
algorithm on Semi-iNat dataset.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Boosting Semi-Supervised Learning by bridging high and low-confidence
predictions [4.18804572788063]
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL)
We propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training.
arXiv Detail & Related papers (2023-08-15T00:27:18Z) - Flexible Distribution Alignment: Towards Long-tailed Semi-supervised Learning with Proper Calibration [18.376601653387315]
Longtailed semi-supervised learning (LTSSL) represents a practical scenario for semi-supervised applications.
This problem is often aggravated by discrepancies between labeled and unlabeled class distributions.
We introduce Flexible Distribution Alignment (FlexDA), a novel adaptive logit-adjusted loss framework.
arXiv Detail & Related papers (2023-06-07T17:50:59Z) - Federated Semi-Supervised Learning with Class Distribution Mismatch [34.46190258291223]
Federated semi-supervised learning (Fed-SSL) is an attractive solution for fully utilizing both labeled and unlabeled data.
We introduce two proper regularization terms that can effectively alleviate the class distribution mismatch problem in Fed-SSL.
We leverage the variance reduction and normalized averaging techniques to develop a novel Fed-SSL algorithm.
arXiv Detail & Related papers (2021-10-29T14:18:20Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Rethinking Re-Sampling in Imbalanced Semi-Supervised Learning [26.069534478556527]
Semi-Supervised Learning (SSL) has shown its strong ability in utilizing unlabeled data when labeled data is scarce.
Most SSL algorithms work under the assumption that the class distributions are balanced in both training and test sets.
In this work, we consider the problem of SSL on class-imbalanced data, which better reflects real-world situations.
arXiv Detail & Related papers (2021-06-01T03:58:18Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
We propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch.
OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers.
It achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
arXiv Detail & Related papers (2021-05-28T23:57:15Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) is a general SSL approach that does not have this constraint but performs relatively poorly in its original formulation.
We argue that PL underperforms due to the erroneous high confidence predictions from poorly calibrated models.
We propose an uncertainty-aware pseudo-label selection (UPS) framework which improves pseudo labeling accuracy by drastically reducing the amount of noise encountered in the training process.
arXiv Detail & Related papers (2021-01-15T23:29:57Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
We develop Distribution Aligning Refinery of Pseudo-label (DARP) algorithm.
We show that DARP is provably and efficiently compatible with state-of-the-art SSL schemes.
arXiv Detail & Related papers (2020-07-17T09:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.