論文の概要: Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules
- arxiv url: http://arxiv.org/abs/2107.06773v1
- Date: Sun, 4 Jul 2021 15:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:23:29.933656
- Title: Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules
- Title(参考訳): 関係グラフ畳み込みネットワークによる薬物分子の血液脳関門侵入予測
- Authors: Yan Ding, Xiaoqian Jiang and Yejin Kim
- Abstract要約: 薬物分子のBBB透過能の評価は、脳薬物開発における重要なステップである。
関連グラフ畳み込みネットワーク(RGCN)を用いて,各薬剤の特徴だけでなく,薬物とタンパク質の関係も扱う。
この性能はすでに有望であり、BBB透過性の予測において、薬物-タンパク質/ドラッグ関係が重要な役割を担っていることを証明した。
- 参考スコア(独自算出の注目度): 12.041672273431994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evaluation of the BBB penetrating ability of drug molecules is a critical
step in brain drug development. Computational prediction based on machine
learning has proved to be an efficient way to conduct the evaluation. However,
performance of the established models has been limited by their incapability of
dealing with the interactions between drugs and proteins, which play an
important role in the mechanism behind BBB penetrating behaviors. To address
this issue, we employed the relational graph convolutional network (RGCN) to
handle the drug-protein (denoted by the encoding gene) relations as well as the
features of each individual drug. In addition, drug-drug similarity was also
introduced to connect structurally similar drugs in the graph. The RGCN model
was initially trained without input of any drug features. And the performance
was already promising, demonstrating the significant role of the
drug-protein/drug-drug relations in the prediction of BBB permeability.
Moreover, molecular embeddings from a pre-trained knowledge graph were used as
the drug features to further enhance the predictive ability of the model.
Finally, the best performing RGCN model was built with a large number of
unlabeled drugs integrated into the graph.
- Abstract(参考訳): 薬物分子のBBB透過能の評価は、脳薬物開発における重要なステップである。
機械学習に基づく計算予測は、その評価を行う効率的な方法であることが証明された。
しかしながら、確立されたモデルの性能は、薬物とタンパク質の相互作用を扱う能力に制限されており、BBB侵入行動のメカニズムにおいて重要な役割を果たす。
この問題に対処するために,我々はリレーショナルグラフ畳み込みネットワーク(RGCN)を用いて,各薬剤の特徴と(エンコーディング遺伝子によって記述された)薬物-タンパク質関係を処理した。
さらに、構造的に類似した薬物をグラフでつなぐために薬物と薬物の類似性も導入された。
RGCNモデルは当初、薬物の特徴を入力せずに訓練された。
また,bbb透過性予測における薬物・タンパク質・薬物・薬物関係の重要性を実証した。
さらに、事前学習した知識グラフからの分子埋め込みを薬物の特徴として用いて、モデルの予測能力をさらに向上させた。
最後に、最も優れたRCCNモデルは、グラフに統合された多数のラベルのない薬物で構築された。
関連論文リスト
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
薬物や標的の構造情報と化学摂動情報を統合するGramSeq-DTAを提案する。
我々の手法は、広く使われているDTAデータセットで検証された場合、現在の最先端のDTA予測モデルよりも優れている。
論文 参考訳(メタデータ) (2024-11-03T03:17:09Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGATは、薬物に対する感受性を予測するグラフ深層学習モデルである。
drGATは既存のモデルよりも優れた性能を示し、精度は78%、F1スコアは76%、DNA損傷物質は269である。
本手法は薬剤感受性を正確に予測するために有用であり,がん患者の治療に関するバイオマーカーの同定に有用である。
論文 参考訳(メタデータ) (2024-05-14T22:16:52Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Medical Knowledge Graph QA for Drug-Drug Interaction Prediction based on
Multi-hop Machine Reading Comprehension [18.34651382394962]
本稿では,MedKGQAと呼ばれる医療知識グラフ質問応答モデルを提案する。
クローズドドメイン文献からの機械読解を利用してドラッグ・ドラッグ相互作用を予測し、オープンドメイン文書からドラッグ・タンパク質三重項の知識グラフを構築する。
提案モデルでは,従来のカンガルー・メドホップデータセットの最先端モデルと比較して薬物と薬物の相互作用予測の精度が4.5%向上した。
論文 参考訳(メタデータ) (2022-12-19T12:24:32Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
薬物相乗効果予測のためのグラフニューラルネットワーク(textitGNN)モデルを提案する。
従来のモデルとは対照的に、我々のGNNベースのアプローチは、薬物のグラフ構造から直接タスク特異的な薬物表現を学習する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
論文 参考訳(メタデータ) (2022-10-03T10:16:29Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
計算スクリーニングは 薬物の組み合わせを優先する重要な方法になっています
DeepDDSは16%以上の予測精度で競合手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-06T08:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。