論文の概要: DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm
- arxiv url: http://arxiv.org/abs/2210.00802v3
- Date: Fri, 26 Apr 2024 07:23:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 18:47:13.485233
- Title: DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm
- Title(参考訳): DDoS: グラフニューラルネットワークによる薬物相乗予測アルゴリズム
- Authors: Kyriakos Schwarz, Alicia Pliego-Mendieta, Amina Mollaysa, Lara Planas-Paz, Chantal Pauli, Ahmed Allam, Michael Krauthammer,
- Abstract要約: 薬物相乗効果予測のためのグラフニューラルネットワーク(textitGNN)モデルを提案する。
従来のモデルとは対照的に、我々のGNNベースのアプローチは、薬物のグラフ構造から直接タスク特異的な薬物表現を学習する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
- 参考スコア(独自算出の注目度): 0.521420263116111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug synergy arises when the combined impact of two drugs exceeds the sum of their individual effects. While single-drug effects on cell lines are well-documented, the scarcity of data on drug synergy, considering the vast array of potential drug combinations, prompts a growing interest in computational approaches for predicting synergies in untested drug pairs. We introduce a Graph Neural Network (\textit{GNN}) based model for drug synergy prediction, which utilizes drug chemical structures and cell line gene expression data. We extract data from the largest available drug combination database (DrugComb) and generate multiple synergy scores (commonly used in the literature) to create seven datasets that serve as a reliable benchmark with high confidence. In contrast to conventional models relying on pre-computed chemical features, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs, providing superior performance in predicting drug synergies. Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
- Abstract(参考訳): 薬物相乗効果は、2つの薬物の複合的な影響が個々の効果の合計を超えると起こる。
細胞株に対するシングルドラッグ効果は十分に文書化されているが、薬物相乗効果に関するデータの不足は、薬物の組み合わせの可能性を考えると、未試験の薬物対における相乗効果を予測するための計算手法への関心が高まりつつある。
薬物の化学構造と細胞株の遺伝子発現データを利用した薬物相乗効果予測のためのグラフニューラルネットワーク(\textit{GNN})モデルを提案する。
我々は,最大利用可能な薬物組み合わせデータベース(DrugComb)からデータを抽出し,複数のシナジースコア(文献でよく使用される)を生成し,信頼性の高い信頼性ベンチマークとして機能する7つのデータセットを作成する。
我々のGNNベースのアプローチは、事前に計算された化学物質の特徴に依存する従来のモデルとは対照的に、薬物のグラフ構造から直接タスク固有の薬物表現を学習し、薬物相乗効果の予測に優れた性能を提供する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
関連論文リスト
- The Graph Convolutional Network with Multi-representation Alignment for
Drug Synergy Prediction [3.4417916979102703]
薬物の組み合わせは、特定の疾患を同時に治療するための2つ以上の薬物の使用を指す。
本研究では,薬物相乗効果を予測するための多表現アライメント(GCNMRA)を用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T15:34:14Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
逆薬物反応(ADR)予測は、医療と薬物発見において重要な役割を果たす。
ADRNetは、臨床データと非臨床データを組み合わせた一般的な協調フィルタリングフレームワークである。
論文 参考訳(メタデータ) (2023-08-03T11:28:12Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z) - CongFu: Conditional Graph Fusion for Drug Synergy Prediction [8.939263684319263]
CongFuは、薬物のシナジーを予測するために設計された条件付きグラフ融合層である。
12のベンチマークデータセット中11の最先端の結果を達成している。
薬物が遺伝子に与える影響を解明するための説明可能性戦略を提案する。
論文 参考訳(メタデータ) (2023-05-23T20:46:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network [0.0]
薬物と薬物の相互作用(DDI)は薬物の機能を妨げる可能性があり、最悪の場合、薬物の副作用(ADR)を引き起こす可能性がある。
本稿では,DDI予測問題に対するSMILES文字列のみに基づく新しいハイパーグラフニューラルネットワーク(HyGNN)モデルを提案する。
提案したHyGNNモデルは, DDIを効果的に予測し, ROC-AUCとPR-AUCを97.9%, 98.1%で比較した。
論文 参考訳(メタデータ) (2022-06-25T22:48:27Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Modular multi-source prediction of drug side-effects with DruGNN [3.229607826010618]
薬物副作用(DSE)は公衆衛生、医療システムコスト、薬物発見プロセスに高い影響を与える。
それらの発生を予測するためには、異種源からのデータを統合する必要がある。
この研究において、そのような異種データはグラフデータセットに統合され、異なるエンティティ間の関係情報を表現的に表現する。
グラフニューラルネットワーク(GNN)は、データセット上のDSEを非常に有望な結果で予測するために利用される。
論文 参考訳(メタデータ) (2022-02-15T09:41:05Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
計算スクリーニングは 薬物の組み合わせを優先する重要な方法になっています
DeepDDSは16%以上の予測精度で競合手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-06T08:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。