論文の概要: Extreme Precipitation Seasonal Forecast Using a Transformer Neural
Network
- arxiv url: http://arxiv.org/abs/2107.06846v1
- Date: Wed, 14 Jul 2021 17:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-15 16:24:25.345529
- Title: Extreme Precipitation Seasonal Forecast Using a Transformer Neural
Network
- Title(参考訳): トランスニューラルネットワークを用いた極端な降雨季節予測
- Authors: Daniel Salles Civitarese, Daniela Szwarcman, Bianca Zadrozny, Campbell
Watson
- Abstract要約: 本稿では, 時間融合変圧器 (TFT) モデルを用いて, 毎週最大降水量の定量化を最大6ヶ月前に予測する手法を提案する。
以上の結果から,TFT予測はS5の予測よりも有意に優れており,気候学に比べて全体的な改善は少ないことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An impact of climate change is the increase in frequency and intensity of
extreme precipitation events. However, confidently predicting the likelihood of
extreme precipitation at seasonal scales remains an outstanding challenge.
Here, we present an approach to forecasting the quantiles of the maximum daily
precipitation in each week up to six months ahead using the temporal fusion
transformer (TFT) model. Through experiments in two regions, we compare TFT
predictions with those of two baselines: climatology and a calibrated ECMWF
SEAS5 ensemble forecast (S5). Our results show that, in terms of quantile risk
at six month lead time, the TFT predictions significantly outperform those from
S5 and show an overall small improvement compared to climatology. The TFT also
responds positively to departures from normal that climatology cannot.
- Abstract(参考訳): 気候変動の影響は、極端な降水現象の頻度と強度の増加である。
しかし、季節スケールでの極端な降水確率を確実に予測することは大きな課題である。
本稿では, 時間融合変圧器 (TFT) モデルを用いて, 週ごとの最大降水量の予測手法を提案する。
2つの地域での実験を通して、TFT予測を気候学と校正ECMWF SEAS5アンサンブル予測(S5)の2つの基準線と比較した。
その結果,6ヶ月のリードタイムでの質的リスクの観点からは,tft予測がs5の予測を大きく上回っており,気候学に比べて全体の改善がみられた。
TFTはまた、気候学ができないという正常からの離脱に肯定的に反応する。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
数値気象予報(NWP)モデルは、北熱帯アフリカにおけるより単純な気候学に基づく降水予測と比較すると性能が劣ることが多い。
本研究では,ガンマ回帰モデルと熱帯波(TW)で学習した畳み込みニューラルネットワーク(CNN)の2つの機械学習モデルを用いて,7~9月のモンスーンシーズンの日降雨を予測する。
論文 参考訳(メタデータ) (2024-08-29T08:36:22Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction [23.075528272022282]
本稿では,データ駆動型気象エミュレータの予測可能性範囲をS2Sタイムスケールに拡張するChaosBenchを提案する。
ChaosBench は、海、氷、土地の再分析生成物を含む、典型的な大気圏 ERA5 以外の変数で構成されている。
我々は、4つの国家気象機関による物理ベースの予測を、我々のデータ駆動の予測のベースラインとして評価した。
論文 参考訳(メタデータ) (2024-02-01T16:07:12Z) - FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models [13.852128658186876]
FuXi Subseasonal-to-Seasonal (FuXi-S2S)は、グローバルな日平均予測を最大42日間提供する機械学習モデルである。
ECMWF ERA5の再分析データから72年間の日次統計をトレーニングしたFuXi-S2Sは、ECMWFの最先端のサブシーズン・ツー・シーソンモデルを上回っている。
論文 参考訳(メタデータ) (2023-12-15T16:31:44Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Adaptive Bias Correction for Improved Subseasonal Forecasting [22.29412394093264]
沈降予測は効果的な水配分、山火事の管理、干ばつと洪水の緩和に重要である。
近年の国際研究は、運用力学モデルのサブシーズン能力の向上に寄与している。
本稿では,最先端の動的予測と機械学習を用いた観測を組み合わせ,適応バイアス補正(ABC)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T21:22:44Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。