Short-term Hourly Streamflow Prediction with Graph Convolutional GRU
Networks
- URL: http://arxiv.org/abs/2107.07039v1
- Date: Wed, 7 Jul 2021 20:26:39 GMT
- Title: Short-term Hourly Streamflow Prediction with Graph Convolutional GRU
Networks
- Authors: Muhammed Sit, Bekir Demiray and Ibrahim Demir
- Abstract summary: It is crucial to predict streamflow, consequently flooding, in order to prepare and mitigate its consequences in terms of property damage and fatalities.
This paper presents a Graph Convolutional GRUs based model to predict the next 36 hours of streamflow for a sensor location using the upstream river network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The frequency and impact of floods are expected to increase due to climate
change. It is crucial to predict streamflow, consequently flooding, in order to
prepare and mitigate its consequences in terms of property damage and
fatalities. This paper presents a Graph Convolutional GRUs based model to
predict the next 36 hours of streamflow for a sensor location using the
upstream river network. As shown in experiment results, the model presented in
this study provides better performance than the persistence baseline and a
Convolutional Bidirectional GRU network for the selected study area in
short-term streamflow prediction.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - The Merit of River Network Topology for Neural Flood Forecasting [3.731618046702812]
Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever.
Forecasting systems typically rely on accurate river discharge predictions.
incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges.
arXiv Detail & Related papers (2024-05-30T08:45:45Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
arXiv Detail & Related papers (2023-12-10T18:23:40Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - Attention-based Domain Adaptation Forecasting of Streamflow in
Data-Sparse Regions [0.40285032034172336]
We propose an attention-based domain adaptation streamflow forecaster for data-sparse regions.
Our approach leverages the hydrological characteristics of a data-rich source domain to induce effective 24hr lead-time streamflow prediction.
arXiv Detail & Related papers (2023-02-10T17:14:20Z) - Heterogeneous Stream-reservoir Graph Networks with Data Assimilation [3.312798619476657]
Accurate prediction of water temperature in streams is critical for monitoring and understanding biogeochemical and ecological processes in streams.
We propose a heterogeneous recurrent graph model to represent interacting processes that underlie stream-reservoir networks.
Because reservoir release data may be unavailable for certain reservoirs, we develop a data assimilation mechanism to correct for the prediction bias caused by reservoir releases.
arXiv Detail & Related papers (2021-10-11T01:47:16Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.