The Merit of River Network Topology for Neural Flood Forecasting
- URL: http://arxiv.org/abs/2405.19836v1
- Date: Thu, 30 May 2024 08:45:45 GMT
- Title: The Merit of River Network Topology for Neural Flood Forecasting
- Authors: Nikolas Kirschstein, Yixuan Sun,
- Abstract summary: Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever.
Forecasting systems typically rely on accurate river discharge predictions.
incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges.
- Score: 3.731618046702812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever. The much-needed forecasting systems typically rely on accurate river discharge predictions. To this end, the SOTA data-driven approaches treat forecasting at spatially distributed gauge stations as isolated problems, even within the same river network. However, incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges. Thus, we model river discharge for a network of gauging stations with GNNs and compare the forecasting performance achieved by different adjacency definitions. Our results show that the model fails to benefit from the river network topology information, both on the entire network and small subgraphs. The learned edge weights correlate with neither of the static definitions and exhibit no regular pattern. Furthermore, the GNNs struggle to predict sudden, narrow discharge spikes. Our work hints at a more general underlying phenomenon of neural prediction not always benefitting from graphical structure and may inspire a systematic study of the conditions under which this happens.
Related papers
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
arXiv Detail & Related papers (2023-12-10T18:23:40Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
We present a modified Convolutional Gated Recurrent Unit (ConvGRU) network for the El Nino-Southern Oscillation (ENSO) region-temporal sequence prediction problem.
The proposed ConvGRU network, with an encoder-decoder sequence-to-sequence structure, takes historical SST maps of the Pacific region as input and generates future SST maps for subsequent months within the ENSO region.
The results demonstrate that the ConvGRU network significantly improves the predictability of the Nino 3.4 index compared to LIM, AF, and RNN.
arXiv Detail & Related papers (2023-06-18T00:15:45Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models.
We propose a generative adversarial deep neural network (GAN) trained to reproduce geologically consistent 2D sections of fluvial successions.
In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.
arXiv Detail & Related papers (2022-07-04T12:52:38Z) - Towards the Explanation of Graph Neural Networks in Digital Pathology
with Information Flows [67.23405590815602]
Graph Neural Networks (GNNs) are widely adopted in digital pathology.
Existing explainers discover an explanatory subgraph relevant to the prediction.
An explanatory subgraph should be not only necessary for prediction, but also sufficient to uncover the most predictive regions.
We propose IFEXPLAINER, which generates a necessary and sufficient explanation for GNNs.
arXiv Detail & Related papers (2021-12-18T10:19:01Z) - Short-term Hourly Streamflow Prediction with Graph Convolutional GRU
Networks [0.0]
It is crucial to predict streamflow, consequently flooding, in order to prepare and mitigate its consequences in terms of property damage and fatalities.
This paper presents a Graph Convolutional GRUs based model to predict the next 36 hours of streamflow for a sensor location using the upstream river network.
arXiv Detail & Related papers (2021-07-07T20:26:39Z) - HydroNets: Leveraging River Structure for Hydrologic Modeling [0.0]
HydroNets are deep neural network models designed to exploit both basin specific rainfall-runoff signals, and upstream network dynamics.
The injection of the river structure prior knowledge reduces sample complexity and allows for scalable and more accurate hydrologic modeling.
We present an empirical study over two large basins in India that convincingly support the proposed model and its advantages.
arXiv Detail & Related papers (2020-07-01T16:32:07Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.