Lindblad evolution without the sign problem
- URL: http://arxiv.org/abs/2107.07059v1
- Date: Thu, 15 Jul 2021 01:00:06 GMT
- Title: Lindblad evolution without the sign problem
- Authors: Tomoya Hayata
- Abstract summary: We show that some real-time problems in open fermion systems can be simulated using the quantum Monte Carlo.
For some cases, the latter can be solved without suffering from the complex measure problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Monte Carlo is one of the most powerful numerical tools for studying
nonpeturbative properties of quantum many-body systems. However, its
application to real-time problems is limited since the complex and
highly-oscillating path-integral weight of the real-time evolution harms the
important sampling. % , which is the notorious sign problem. In this Letter, we
show that some real-time problems in open fermion systems can be simulated
using the quantum Monte Carlo. To this end, we prescribe a mapping between a
real-time problem in open quantum systems and a statistical problem in
non-Hermitian quantum systems; for some cases, the latter can be solved without
suffering from the complex measure problem. To explain our idea and demonstrate
how it works, we compute the real-time evolution of fidelities in open fermion
systems under dissipation.
Related papers
- Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs [0.0]
We study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians.
We show that statistical pseudo-randomness can already be achieved by a quantum system driven with a single frequency.
arXiv Detail & Related papers (2024-02-09T19:00:00Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum-assisted Monte Carlo algorithms for fermions [5.625946422295428]
We propose a family of scalable quantum-assisted Monte Carlo algorithms where the quantum computer is used at its minimal cost.
We show that the hybrid Monte Carlo framework is a general way to suppress errors in the ground state obtained from classical algorithms.
arXiv Detail & Related papers (2022-05-30T07:49:22Z) - Minimum-Time Quantum Control and the Quantum Brachistochrone Equation [3.0616044531734192]
We present the general solution to the full quantum brachistochrone equation.
We prove that the speed of evolution under constraints is reduced with respect to the unrestricted case.
We find that solving the quantum brachistochrone equation is closely connected to solving the dynamics of the Lagrange multipliers.
arXiv Detail & Related papers (2022-04-27T09:26:59Z) - Lefschetz Thimble Quantum Monte Carlo for Spin Systems [0.0]
We use Lefschetz thimbles to overcome the intrinsic sign problem in spin coherent state path integral Monte Carlo.
We demonstrate its effectiveness at lessening the sign problem in this setting, despite the fact that the initial mapping to spin coherent states introduces its own sign problem.
arXiv Detail & Related papers (2021-10-20T18:00:04Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.