論文の概要: Lockout: Sparse Regularization of Neural Networks
- arxiv url: http://arxiv.org/abs/2107.07160v1
- Date: Thu, 15 Jul 2021 07:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 14:09:28.822052
- Title: Lockout: Sparse Regularization of Neural Networks
- Title(参考訳): Lockout: ニューラルネットワークのスパース正規化
- Authors: Gilmer Valdes, Wilmer Arbelo, Yannet Interian, and Jerome H. Friedman
- Abstract要約: パラメータ $w$ の値に制約 $P(w)leq t$ を置き、精度を向上させるために正規化を適用する。
我々は、任意の微分可能関数$f$と損失$L$に対してそのようなすべての解を提供する高速アルゴリズムと、各パラメータの絶対値の単調関数である任意の制約$P$を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many regression and classification procedures fit a parameterized function
$f(x;w)$ of predictor variables $x$ to data $\{x_{i},y_{i}\}_1^N$ based on some
loss criterion $L(y,f)$. Often, regularization is applied to improve accuracy
by placing a constraint $P(w)\leq t$ on the values of the parameters $w$.
Although efficient methods exist for finding solutions to these constrained
optimization problems for all values of $t\geq0$ in the special case when $f$
is a linear function, none are available when $f$ is non-linear (e.g. Neural
Networks). Here we present a fast algorithm that provides all such solutions
for any differentiable function $f$ and loss $L$, and any constraint $P$ that
is an increasing monotone function of the absolute value of each parameter.
Applications involving sparsity inducing regularization of arbitrary Neural
Networks are discussed. Empirical results indicate that these sparse solutions
are usually superior to their dense counterparts in both accuracy and
interpretability. This improvement in accuracy can often make Neural Networks
competitive with, and sometimes superior to, state-of-the-art methods in the
analysis of tabular data.
- Abstract(参考訳): 多くの回帰および分類手順は、パラメータ化された関数 $f(x;w)$ の予測変数 $x$ をデータ $\{x_{i},y_{i}\}_1^N$ に適合させる。
しばしば、パラメータ $w$ の値に制約 $P(w)\leq t$ を配置することで、精度を向上させるために正規化を適用する。
f$ が線型函数である特別な場合において、これらの制約付き最適化問題の解を見つけるための効率的な方法は存在するが、$f$ が非線形である場合(例えば、)は不可能である。
ニューラルネットワーク)。
ここでは、任意の微分可能関数 $f$ と損失 $L$ に対してそのような解を全て提供し、任意の制約 $P$ は各パラメータの絶対値の単調関数の増大である。
任意のニューラルネットワークの規則化を誘導するスパーシティを含む応用について論じる。
実験の結果、これらのスパース解は通常、精度と解釈可能性の両方において密度の高い解よりも優れていることが示された。
この精度の改善は、しばしばグラフデータの解析における最先端の手法と競合し、時には優位になる。
関連論文リスト
- Adaptive approximation of monotone functions [0.0]
GreedyBox が任意の関数 $f$ に対して,対数因子まで,最適なサンプル複雑性を実現することを証明した。
おそらく予想通り、GreedyBoxの$Lp(mu)$エラーは、アルゴリズムによって予測されるよりもはるかに高速な$C2$関数で減少する。
論文 参考訳(メタデータ) (2023-09-14T08:56:31Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
我々は、平均$n$スムーズでおそらくは非カラー関数のほぼ定常点を求める問題を再考する。
我々は$smallsfcolorgreen$を一般化し、事実上あらゆるサンプリングメカニズムで確実に動作するようにします。
我々は、スムーズな非カラー状態における最適境界の最も一般的な、最も正確な解析を提供する。
論文 参考訳(メタデータ) (2022-06-05T21:32:33Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - On the Provable Generalization of Recurrent Neural Networks [7.115768009778412]
リカレントニューラルネットワーク(RNN)のトレーニングと一般化の分析
正規化条件を使わずに関数を学習する一般化誤差を証明した。
また、入力シーケンスのN-変数関数を学習するための新しい結果も証明する。
論文 参考訳(メタデータ) (2021-09-29T02:06:33Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
関数評価のみに基づく滑らかな関数のグローバル最小化を考える。
本稿では,近似関数を共同でモデル化し,大域的最小値を求める手法を検討する。
論文 参考訳(メタデータ) (2020-12-22T12:59:30Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
truncated linear regression において、従属変数 $(A_i, y_i)_i$ は $y_i= A_irm T cdot x* + eta_i$ は固定された未知の興味ベクトルである。
目標は、$A_i$とノイズ分布に関するいくつかの好ましい条件の下で$x*$を回復することである。
我々は、$k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated sample。
論文 参考訳(メタデータ) (2020-07-29T00:31:34Z) - Does generalization performance of $l^q$ regularization learning depend
on $q$? A negative example [19.945160684285003]
$lq$-regularizationは、機械学習と統計モデリングにおいて魅力的なテクニックであることが示されている。
0 infty$ に対するすべての $lq$ 推定子は、同様の一般化誤差境界が得られることを示す。
この発見は、あるモデリングの文脈において、$q$の選択が一般化能力に強い影響を与えることはないことを仮に示している。
論文 参考訳(メタデータ) (2013-07-25T00:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。