論文の概要: MCL-GAN: Generative Adversarial Networks with Multiple Specialized
Discriminators
- arxiv url: http://arxiv.org/abs/2107.07260v1
- Date: Thu, 15 Jul 2021 11:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:57:45.111212
- Title: MCL-GAN: Generative Adversarial Networks with Multiple Specialized
Discriminators
- Title(参考訳): MCL-GAN:複数の特殊識別器を持つ生成的敵対ネットワーク
- Authors: Jinyoung Choi and Bohyung Han
- Abstract要約: 本稿では,複数の識別器を用いた生成的対向ネットワークを提案する。
データ全体のサブセットに専門知識を持つように、各差別者を指導します。
複数の識別器を使用するにもかかわらず、バックボーンネットワークは識別器間で共有される。
- 参考スコア(独自算出の注目度): 69.2281872339588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a generative adversarial network with multiple discriminators,
where each discriminator is specialized to distinguish the subset of a real
dataset. This approach facilitates learning a generator coinciding with the
underlying data distribution and thus mitigates the chronic mode collapse
problem. From the inspiration of multiple choice learning, we guide each
discriminator to have expertise in the subset of the entire data and allow the
generator to find reasonable correspondences between the latent and real data
spaces automatically without supervision for training examples and the number
of discriminators. Despite the use of multiple discriminators, the backbone
networks are shared across the discriminators and the increase of training cost
is minimized. We demonstrate the effectiveness of our algorithm in the standard
datasets using multiple evaluation metrics.
- Abstract(参考訳): 本稿では,実データセットのサブセットを識別するために各判別器を特殊化した,複数の識別器を有する生成型逆ネットワークを提案する。
このアプローチは、基礎となるデータ分布と一致するジェネレータの学習を容易にするため、慢性モード崩壊問題を緩和する。
複数選択学習の着想から,各判別器にデータのサブセットに関する専門知識を持たせるように指導し,実データ空間と潜在データ空間の適切な対応を,訓練例と判別器の数を監督することなく自動で見つけられるようにした。
複数の識別器を使用するにもかかわらず、バックボーンネットワークは識別器間で共有され、トレーニングコストの増大を最小限に抑える。
複数の評価指標を用いて,標準データセットにおけるアルゴリズムの有効性を示す。
関連論文リスト
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Generalizable Low-Resource Activity Recognition with Diverse and
Discriminative Representation Learning [24.36351102003414]
HAR(Human Activity Recognition)は、人間のセンサーの読み取りから動作パターンを特定することに焦点を当てた時系列分類タスクである。
一般化可能な低リソースHARのためのDDLearn(Diverse and Discriminative Expression Learning)という新しい手法を提案する。
平均精度は9.5%向上した。
論文 参考訳(メタデータ) (2023-05-25T08:24:22Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Multimodal Adversarially Learned Inference with Factorized
Discriminators [10.818838437018682]
本稿では,生成逆ネットワークに基づくマルチモーダルデータの生成モデリングのための新しい手法を提案する。
コヒーレントなマルチモーダル生成モデルを学習するためには、異なるエンコーダ分布とジョイントデコーダ分布を同時に整合させることが必要であることを示す。
判別器を分解することで、対照的な学習を生かし、単調なデータに基づいてモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-20T08:18:49Z) - Data-Efficient Instance Generation from Instance Discrimination [40.71055888512495]
本稿では,インスタンス識別に基づくデータ効率の高いインスタンス生成手法を提案する。
本研究では,インスタンス識別に基づくデータ効率の高いインスタンス生成(InsGen)手法を提案する。
論文 参考訳(メタデータ) (2021-06-08T17:52:59Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
連続学習は、入力されたデータが完全にラベル付けされていると仮定し、実際のアプリケーションでは適用できないかもしれない。
我々は、条件付き生成逆数ネットワーク(GAN)を用いた分類器を相互に学習するために、識別器整合(ORDisCo)を用いたディープオンライン再生を提案する。
ORDisCo が SSCL の様々な半教師付き学習ベンチマークデータセットで大幅なパフォーマンス向上を達成していることを示します。
論文 参考訳(メタデータ) (2021-01-02T09:04:14Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
GAN(Generative Adversarial Networks)は,近年,現実的な画像の合成において大きな進歩を遂げている。
GANは不適合や過度に適合する傾向があり、分析が困難で制約を受ける。
無限に多くのサンプルがあり、実際のデータ分布は単純である人工データセットでトレーニングする。
GANのトレーニング混合物はネットワークの深さや幅を増大させるよりもパフォーマンスが向上することがわかった。
論文 参考訳(メタデータ) (2020-07-13T14:51:02Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。