論文の概要: Multimodal Adversarially Learned Inference with Factorized
Discriminators
- arxiv url: http://arxiv.org/abs/2112.10384v1
- Date: Mon, 20 Dec 2021 08:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 15:44:50.103872
- Title: Multimodal Adversarially Learned Inference with Factorized
Discriminators
- Title(参考訳): factorized discriminatorsを用いたマルチモーダル適応型学習推論
- Authors: Wenxue Chen and Jianke Zhu
- Abstract要約: 本稿では,生成逆ネットワークに基づくマルチモーダルデータの生成モデリングのための新しい手法を提案する。
コヒーレントなマルチモーダル生成モデルを学習するためには、異なるエンコーダ分布とジョイントデコーダ分布を同時に整合させることが必要であることを示す。
判別器を分解することで、対照的な学習を生かし、単調なデータに基づいてモデルを訓練する。
- 参考スコア(独自算出の注目度): 10.818838437018682
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning from multimodal data is an important research topic in machine
learning, which has the potential to obtain better representations. In this
work, we propose a novel approach to generative modeling of multimodal data
based on generative adversarial networks. To learn a coherent multimodal
generative model, we show that it is necessary to align different encoder
distributions with the joint decoder distribution simultaneously. To this end,
we construct a specific form of the discriminator to enable our model to
utilize data efficiently, which can be trained constrastively. By taking
advantage of contrastive learning through factorizing the discriminator, we
train our model on unimodal data. We have conducted experiments on the
benchmark datasets, whose promising results show that our proposed approach
outperforms the-state-of-the-art methods on a variety of metrics. The source
code will be made publicly available.
- Abstract(参考訳): マルチモーダルデータからの学習は機械学習の重要な研究テーマであり、より良い表現を得る可能性がある。
本稿では,生成型adversarial networkに基づくマルチモーダルデータの生成モデルに対する新しいアプローチを提案する。
コヒーレントなマルチモーダル生成モデルを学習するためには、異なるエンコーダ分布とジョイントデコーダ分布を同時に調整する必要があることを示す。
この目的のために,モデルがデータを効率的に活用できるように識別器の特定の形態を構築し,断続的に訓練する。
識別器を分解することでコントラスト学習を活用し、一様データに基づいてモデルを訓練する。
我々は,ベンチマークデータセットについて実験を行い,提案手法が様々な測定値において最先端の手法よりも優れていることを示した。
ソースコードは一般公開される予定だ。
関連論文リスト
- Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformerは新しいトランスフォーマーベースのモデルで、クライアントでのアンモダルデータセットのみを使用して、単一モダルトレーニングを可能にする。
我々は,マルコフ連鎖モンテカルロサンプリングを用いた局所エンコーダの不確実性を考慮したアグリゲーション法を開発した。
一般的な感情分析ベンチマークであるCMU-MOSIとCMU-MOSEIの実験は、HA-Fedformerが最先端のマルチモーダルモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2023-03-27T07:07:33Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
本研究は,モデルトレーニングにおいて,すべてのモダリティとクラスラベルが利用できる現実的なシナリオについて研究する。
このシナリオでは、変動的な下界境界は、結合表現と欠測モダリティの間の相互情報を制限する。
論文 参考訳(メタデータ) (2021-10-09T17:22:24Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
生成モデル学習のための対照的なフレームワークを開発し、モダリティ間の共通性だけでなく、「関連」と「関連しない」マルチモーダルデータの区別によってモデルを訓練することができる。
提案手法では, 生成モデルを用いて, 関係のないサンプルから関連サンプルを正確に識別し, ラベルのない多モードデータの利用が可能となる。
論文 参考訳(メタデータ) (2020-07-02T15:08:11Z) - Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence [20.23920009396818]
本稿では,Jensen-Shannon分散を複数の分布に利用した,新しい,効率的な目的関数を提案する。
同時に、動的前駆体を介して一方向と関節の多モード後駆体を直接近似する。
広汎な実験では、教師なし・生成学習タスクにおける従来の研究と比較して、提案したmmJSDモデルの利点を実証する。
論文 参考訳(メタデータ) (2020-06-15T09:30:15Z) - Reinforced Data Sampling for Model Diversification [15.547681142342846]
本稿では,データを適切にサンプリングする方法を学ぶための新しいReinforced Data Smpling (RDS)法を提案する。
モデルダイバーシフィケーションの最適化問題である$delta-div$をデータサンプリングで定式化し,モデルダイバーシフィケーションを注入することで学習ポテンシャルと最適アロケーションを最大化する。
モデル多様化のためのトレーニング可能なサンプリングは,各種機械学習タスクの潜在能力を追求する競技組織,研究者,さらには開始者にとって有用であることが示唆された。
論文 参考訳(メタデータ) (2020-06-12T11:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。