Advancing Hybrid Quantum-Classical Algorithms via Mean-Operators
- URL: http://arxiv.org/abs/2107.07527v1
- Date: Thu, 15 Jul 2021 18:00:04 GMT
- Title: Advancing Hybrid Quantum-Classical Algorithms via Mean-Operators
- Authors: Donggyu Kim, Pureum Noh, Hyun-Yong Lee, Eun-Gook Moon
- Abstract summary: Entanglement in quantum many-body systems is the key concept for future technology and science.
We propose a theory which overcomes the limitations by combining advantages of the hybrid algorithms and the standard mean-field-theory in condensed matter physics.
- Score: 0.30905468888217874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement in quantum many-body systems is the key concept for future
technology and science, opening up a possibility to explore uncharted realms in
an enormously large Hilbert space. The hybrid quantum-classical algorithms have
been suggested to control quantum entanglement of many-body systems, and yet
their applicability is intrinsically limited by the numbers of qubits and
quantum operations. Here we propose a theory which overcomes the limitations by
combining advantages of the hybrid algorithms and the standard
mean-field-theory in condensed matter physics, named as mean-operator-theory.
We demonstrate that the number of quantum operations to prepare an entangled
target many-body state such as symmetry-protected-topological states is
significantly reduced by introducing a mean-operator. We also show that a class
of mean-operators is expressed as time-evolution operators and our theory is
directly applicable to quantum simulations with $^{87}$Rb neutral atoms or
trapped $^{40}$Ca$^+$ ions.
Related papers
- Universal quantum computation using Ising anyons from a non-semisimple Topological Quantum Field Theory [0.058331173224054456]
We propose a framework for topological quantum computation using newly discovered non-semisimple analogs of topological quantum field theories in 2+1 dimensions.
We show that the non-semisimple theory introduces new anyon types that extend the Ising framework.
arXiv Detail & Related papers (2024-10-18T21:03:07Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Universal Euler-Cartan Circuits for Quantum Field Theories [0.0]
A hybrid quantum-classical algorithm is presented for the computation of non-perturbative characteristics of quantum field theories.
The algorithm relies on a universal parametrized quantum circuit ansatz based on Euler and Cartan's decompositions of single and two-qubit operators.
arXiv Detail & Related papers (2024-07-31T01:59:09Z) - Diagonalization of large many-body Hamiltonians on a quantum processor [28.65071920454694]
We use a superconducting quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites.
We construct subspaces of the many-body Hilbert space using Trotterized unitary evolutions executed on the quantum processor.
arXiv Detail & Related papers (2024-07-19T16:02:03Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.