Depth Estimation from Monocular Images and Sparse radar using Deep
Ordinal Regression Network
- URL: http://arxiv.org/abs/2107.07596v1
- Date: Thu, 15 Jul 2021 20:17:48 GMT
- Title: Depth Estimation from Monocular Images and Sparse radar using Deep
Ordinal Regression Network
- Authors: Chen-Chou Lo and Patrick Vandewalle
- Abstract summary: We integrate sparse radar data into a monocular depth estimation model and introduce a novel preprocessing method for reducing the sparseness and limited field of view provided by radar.
We propose a novel method for estimating dense depth maps from monocular 2D images and sparse radar measurements using deep learning based on the deep ordinal regression network by Fu et al.
- Score: 2.0446891814677692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We integrate sparse radar data into a monocular depth estimation model and
introduce a novel preprocessing method for reducing the sparseness and limited
field of view provided by radar. We explore the intrinsic error of different
radar modalities and show our proposed method results in more data points with
reduced error. We further propose a novel method for estimating dense depth
maps from monocular 2D images and sparse radar measurements using deep learning
based on the deep ordinal regression network by Fu et al. Radar data are
integrated by first converting the sparse 2D points to a height-extended 3D
measurement and then including it into the network using a late fusion
approach. Experiments are conducted on the nuScenes dataset. Our experiments
demonstrate state-of-the-art performance in both day and night scenes.
Related papers
- RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion [58.77329237533034]
We propose a Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection.
RaCFormer achieves superior results of 64.9% mAP and 70.2% NDS on nuScenes, even outperforming several LiDAR-based detectors.
arXiv Detail & Related papers (2024-12-17T09:47:48Z) - Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis [53.702118455883095]
We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting.
Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images.
Our method significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T15:10:27Z) - GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
Existing algorithms process radar data by projecting 3D points onto the image plane for pixel-level feature extraction.
We propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data.
We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
arXiv Detail & Related papers (2024-09-02T14:15:09Z) - CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation [6.9404362058736995]
This paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation.
The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements.
For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively.
arXiv Detail & Related papers (2024-06-30T13:39:29Z) - RadarCam-Depth: Radar-Camera Fusion for Depth Estimation with Learned Metric Scale [21.09258172290667]
We present a novel approach for metric dense depth estimation based on the fusion of a single-view image and a sparse, noisy Radar point cloud.
Our proposed method significantly outperforms the state-of-the-art Radar-Camera depth estimation methods by reducing the mean absolute error (MAE) of depth estimation by 25.6% and 40.2% on the challenging nuScenes dataset and our self-collected ZJU-4DRadarCam dataset, respectively.
arXiv Detail & Related papers (2024-01-09T02:40:03Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - How much depth information can radar infer and contribute [1.5899159309486681]
We investigate the intrinsic depth capability of radar data using state-of-the-art depth estimation models.
Our experiments demonstrate that the estimated depth from only sparse radar input can detect the shape of surroundings to a certain extent.
arXiv Detail & Related papers (2022-02-26T20:02:47Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.