Accounting for Model Uncertainty in Algorithmic Discrimination
- URL: http://arxiv.org/abs/2105.04249v1
- Date: Mon, 10 May 2021 10:34:12 GMT
- Title: Accounting for Model Uncertainty in Algorithmic Discrimination
- Authors: Junaid Ali, Preethi Lahoti, Krishna P. Gummadi
- Abstract summary: We argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty.
We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty.
- Score: 16.654676310264705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional approaches to ensure group fairness in algorithmic decision
making aim to equalize ``total'' error rates for different subgroups in the
population. In contrast, we argue that the fairness approaches should instead
focus only on equalizing errors arising due to model uncertainty (a.k.a
epistemic uncertainty), caused due to lack of knowledge about the best model or
due to lack of data. In other words, our proposal calls for ignoring the errors
that occur due to uncertainty inherent in the data, i.e., aleatoric
uncertainty. We draw a connection between predictive multiplicity and model
uncertainty and argue that the techniques from predictive multiplicity could be
used to identify errors made due to model uncertainty. We propose scalable
convex proxies to come up with classifiers that exhibit predictive multiplicity
and empirically show that our methods are comparable in performance and up to
four orders of magnitude faster than the current state-of-the-art. We further
propose methods to achieve our goal of equalizing group error rates arising due
to model uncertainty in algorithmic decision making and demonstrate the
effectiveness of these methods using synthetic and real-world datasets.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.
Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.
Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Identifying Drivers of Predictive Aleatoric Uncertainty [2.5311562666866494]
We present a simple approach to explain predictive aleatoric uncertainties.
We estimate uncertainty as predictive variance by adapting a neural network with a Gaussian output distribution.
We quantify our findings with a nuanced benchmark analysis that includes real-world datasets.
arXiv Detail & Related papers (2023-12-12T13:28:53Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks [0.0]
We propose a novel method to capture data points near decision boundary in neural network that are often referred to a specific type of uncertainty.
Uncertainty estimates are derived from the input perturbations, unlike previous studies that provide perturbations on the model's parameters.
We show that the proposed method has revealed a significant outperformance over other methods and provided less risk to capture model uncertainty in machine learning.
arXiv Detail & Related papers (2021-07-15T21:30:26Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods.
We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data.
We show that correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations.
arXiv Detail & Related papers (2020-07-01T00:37:41Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.