論文の概要: Obtaining Causal Information by Merging Datasets with MAXENT
- arxiv url: http://arxiv.org/abs/2107.07640v1
- Date: Thu, 15 Jul 2021 23:16:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:33:54.646338
- Title: Obtaining Causal Information by Merging Datasets with MAXENT
- Title(参考訳): MAXENTとデータセットの融合による因果情報取得
- Authors: Sergio Hernan Garrido Mejia, Elke Kirschbaum, Dominik Janzing
- Abstract要約: 我々は,すべての変数を共同で観察することなく,因果的知識の獲得方法について論じる。
共同創設者の存在下での対象変数に対する治療の介入分布と平均因果効果の限界を導出する。
- 参考スコア(独自算出の注目度): 12.64433334351049
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The investigation of the question "which treatment has a causal effect on a
target variable?" is of particular relevance in a large number of scientific
disciplines. This challenging task becomes even more difficult if not all
treatment variables were or even cannot be observed jointly with the target
variable. Another similarly important and challenging task is to quantify the
causal influence of a treatment on a target in the presence of confounders. In
this paper, we discuss how causal knowledge can be obtained without having
observed all variables jointly, but by merging the statistical information from
different datasets. We first show how the maximum entropy principle can be used
to identify edges among random variables when assuming causal sufficiency and
an extended version of faithfulness. Additionally, we derive bounds on the
interventional distribution and the average causal effect of a treatment on a
target variable in the presence of confounders. In both cases we assume that
only subsets of the variables have been observed jointly.
- Abstract(参考訳): どの治療が標的変数に因果効果をもたらすのか?
特に多くの科学分野に関係しています
この困難なタスクは、すべての処理変数がターゲット変数と共同で観測されるか、あるいは観測できない場合、さらに困難になる。
同様に重要で困難なタスクは、共同創設者の存在下での標的に対する治療の因果影響を定量化することである。
本稿では,すべての変数を共同で観測することなく,異なるデータセットから統計情報をマージすることで因果的知識をいかに得るかについて議論する。
まず, 最大エントロピー原理を用いて, 因果的十分性を仮定した確率変数間のエッジを同定し, 忠実性の拡張バージョンを導出する。
さらに,共同創設者の存在下での介入分布と治療の目標変数に対する平均因果効果の限界を導出する。
どちらの場合も、変数のサブセットのみが共同で観測されていると仮定する。
関連論文リスト
- Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables [13.12743473333296]
非実験データから因果効果を推定することは、科学の多くの分野における根本的な問題である。
非パラメトリック因果効果推定における共変量選択のための新しい局所学習手法を提案する。
我々は、合成データと実世界のデータの両方に関する広範な実験を通じて、アルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-25T12:08:54Z) - Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
因果発見(Causal Discovery)は、構成変数の統計的性質を分析することで、この問題に取り組む手法である。
教師付き学習によって得られたことに基づいて,現在の(おそらく誤解を招く)ベースライン結果に疑問を呈する。
その結果、堅牢な相互情報測定を用いて、教師なしの方法でこの問題にアプローチする。
論文 参考訳(メタデータ) (2024-08-01T09:11:08Z) - Causal Inference with Latent Variables: Recent Advances and Future Prospectives [43.04559575298597]
因果推論(英: Causal inference、CI)は、興味のある変数間の固有の因果関係を推定することを目的としている。
重要な変数の観察の欠如は、CIメソッドの信頼性を著しく損なう。
これらの潜伏変数が不注意に扱われると、様々な結果が生じる。
論文 参考訳(メタデータ) (2024-06-20T03:15:53Z) - Structural restrictions in local causal discovery: identifying direct causes of a target variable [0.9208007322096533]
観測的関節分布から対象変数の直接的な原因の集合を学ぶことは、科学の基本的な問題である。
ここでは、完全なDAGではなく、1つのターゲット変数の直接的な原因を特定することにのみ関心があります。
これにより、識別可能性の仮定を緩和し、より高速で堅牢なアルゴリズムを開発することができる。
論文 参考訳(メタデータ) (2023-07-29T18:31:35Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Bounding probabilities of causation through the causal marginal problem [12.542533707005092]
因果関係の確率は、法律、医療、公共政策における意思決定において基本的な役割を担っている。
多くの臨床試験や公共政策評価ケースでは、異なる治療が同じ結果変数に与える影響を調べる独立したデータセットが存在する。
本稿では、このような独立したデータセットから構築されたSCM間の対実的整合性を示すことにより、因果関係の確率に対する既存の限界を著しく厳格化する方法について概説する。
論文 参考訳(メタデータ) (2023-04-04T12:16:38Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。