論文の概要: Contrastive Predictive Coding for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2107.07820v1
- Date: Fri, 16 Jul 2021 11:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:46:27.105066
- Title: Contrastive Predictive Coding for Anomaly Detection
- Title(参考訳): 異常検出のためのコントラスト予測符号化
- Authors: Puck de Haan, Sindy L\"owe
- Abstract要約: 対照的予測符号化モデル (arXiv:1807.03748) は異常検出とセグメンテーションに使用される。
パッチワイドのコントラスト損失を直接異常スコアと解釈できることを示す。
ModelはMVTec-ADデータセット上の異常検出とセグメンテーションの両方に対して有望な結果を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable detection of anomalies is crucial when deploying machine learning
models in practice, but remains challenging due to the lack of labeled data. To
tackle this challenge, contrastive learning approaches are becoming
increasingly popular, given the impressive results they have achieved in
self-supervised representation learning settings. However, while most existing
contrastive anomaly detection and segmentation approaches have been applied to
images, none of them can use the contrastive losses directly for both anomaly
detection and segmentation. In this paper, we close this gap by making use of
the Contrastive Predictive Coding model (arXiv:1807.03748). We show that its
patch-wise contrastive loss can directly be interpreted as an anomaly score,
and how this allows for the creation of anomaly segmentation masks. The
resulting model achieves promising results for both anomaly detection and
segmentation on the challenging MVTec-AD dataset.
- Abstract(参考訳): 機械学習モデルを実際にデプロイする際には、信頼性の高い異常検出が不可欠だが、ラベル付きデータがないため、依然として難しい。
この課題に取り組むために、自己教師付き表現学習設定で達成した印象的な結果を考えると、対照的な学習アプローチがますます人気を高めている。
しかしながら、既存のコントラスト異常検出およびセグメンテーションアプローチのほとんどは画像に適用されているが、コントラスト損失を直接使用して、異常検出とセグメンテーションの両方を行うことはできない。
本稿では,コントラスト予測符号化モデル(arxiv:1807.03748)を用いて,このギャップを解消する。
その結果, パッチ方向のコントラスト損失は, 直接, 異常スコアとして解釈され得ること, 異常分割マスクの作成にどのように寄与するかが明らかになった。
得られたモデルは、挑戦的なMVTec-ADデータセット上の異常検出とセグメント化の両方に対して有望な結果を得る。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - ReConPatch : Contrastive Patch Representation Learning for Industrial
Anomaly Detection [5.998761048990598]
本稿では,事前学習モデルから抽出したパッチ特徴の線形変調を訓練することにより,異常検出のための識別機能を構築するReConPatchを紹介する。
本手法は,MVTec ADデータセットに対して,最先端の異常検出性能(99.72%)を実現する。
論文 参考訳(メタデータ) (2023-05-26T07:59:36Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。