Architectures of Meaning, A Systematic Corpus Analysis of NLP Systems
- URL: http://arxiv.org/abs/2107.08124v1
- Date: Fri, 16 Jul 2021 21:10:43 GMT
- Title: Architectures of Meaning, A Systematic Corpus Analysis of NLP Systems
- Authors: Oskar Wysocki, Malina Florea, Donal Landers and Andre Freitas
- Abstract summary: The framework is validated in the full corpus of Semeval tasks.
It provides a systematic mechanism to interpret a largely dynamic and exponentially growing field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel statistical corpus analysis framework targeted
towards the interpretation of Natural Language Processing (NLP) architectural
patterns at scale. The proposed approach combines saturation-based lexicon
construction, statistical corpus analysis methods and graph collocations to
induce a synthesis representation of NLP architectural patterns from corpora.
The framework is validated in the full corpus of Semeval tasks and demonstrated
coherent architectural patterns which can be used to answer architectural
questions on a data-driven fashion, providing a systematic mechanism to
interpret a largely dynamic and exponentially growing field.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Recommending Actionable Strategies: A Semantic Approach to Integrating Analytical Frameworks with Decision Heuristics [0.0]
We present a novel approach for recommending actionable strategies by integrating strategic frameworks with decisions through semantic analysis.
Our methodology bridges this gap using advanced natural language processing (NLP), demonstrated through integrating frameworks like the 6C model with the Thirty-Six Stratagems.
arXiv Detail & Related papers (2025-01-24T16:53:37Z) - Analysis and Visualization of Linguistic Structures in Large Language Models: Neural Representations of Verb-Particle Constructions in BERT [0.0]
This study investigates the internal representations of verb-particle combinations within large language models (LLMs)
We analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'
Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories.
arXiv Detail & Related papers (2024-12-19T09:21:39Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
We present EdTM, as an approach for label name supervised topic modeling.
EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities.
arXiv Detail & Related papers (2024-06-28T13:57:27Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - Nested Named Entity Recognition as Holistic Structure Parsing [92.8397338250383]
This work models the full nested NEs in a sentence as a holistic structure, then we propose a holistic structure parsing algorithm to disclose the entire NEs once for all.
Experiments show that our model yields promising results on widely-used benchmarks which approach or even achieve state-of-the-art.
arXiv Detail & Related papers (2022-04-17T12:48:20Z) - Design considerations for a hierarchical semantic compositional
framework for medical natural language understanding [3.7003326903946756]
We describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve.
The paper describes insights from four key aspects including semantic memory, semantic composition, semantic activation.
We discuss the design of a generative semantic model and an associated semantic used to transform a free-text sentence into a logical representation of its meaning.
arXiv Detail & Related papers (2022-04-05T09:04:34Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015.
Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks.
The survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models.
arXiv Detail & Related papers (2020-05-31T18:02:26Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
The architecture integrates existing NLP components to produce candidate analyses on eight levels of linguistic modeling.
The architecture builds on Universal Dependencies (UD) as its representation formalism on the form level and on Abstract Meaning Representations (AMRs) to represent semantic analyses of learner answers.
arXiv Detail & Related papers (2020-04-15T11:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.