Module for arbitrary controlled rotation in gate-based quantum
algorithms
- URL: http://arxiv.org/abs/2107.08168v1
- Date: Sat, 17 Jul 2021 03:10:45 GMT
- Title: Module for arbitrary controlled rotation in gate-based quantum
algorithms
- Authors: Shilu Yan, Tong Dou, Runqiu Shu, Wei Cui
- Abstract summary: We implement arbitrary controlled rotation of quantum algorithms with a proposed modular method.
The proposed method can be applied to more general quantum machine learning algorithms.
- Score: 4.226630104506498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To assess whether a gate-based quantum algorithm can be executed successfully
on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual
value of quantum resources should be considered carefully. Based on quantum
phase estimation, we implemente arbitrary controlled rotation of quantum
algorithms with a proposed modular method. The proposed method is not limited
to be used as a submodule of the HHL algorithm and can be applied to more
general quantum machine learning algorithms. Compared with the
polynomial-fitting function method, our method only requires the least ancillas
and the least quantum gates to maintain the high fidelity of quantum
algorithms. The method theoretically will not influence the acceleration of
original algorithms. Numerical simulations illustrate the effectiveness of the
proposed method. Furthermore, if the corresponding diagonal unitary matrix can
be effectively decomposed, the method is also polynomial in time cost.
Related papers
- A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
We tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task.
We use a novel encoding method for the RL-state, a dense reward function, and an $epsilon$-greedy policy to achieve this.
We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm.
arXiv Detail & Related papers (2023-06-19T17:59:04Z) - Semantic embedding for quantum algorithms [0.0]
A need has developed for an assurance of the correctness of high-level quantum algorithmic reasoning.
Many quantum algorithms have been unified and improved using quantum signal processing (QSP) and quantum singular value transformation (QSVT)
We show that QSP/QSVT can be treated and combined modularly, purely in terms of the functional transforms they embed.
We also identify existing quantum algorithms whose use of semantic embedding is implicit, spanning from distributed search to soundness in quantum cryptography.
arXiv Detail & Related papers (2023-04-27T17:55:40Z) - Improved maximum-likelihood quantum amplitude estimation [0.0]
Quantum estimation is a key subroutine in a number of powerful quantum algorithms, including quantum-enhanced Monte Carlo simulation and quantum machine learning.
In this article, we deepen the analysis of Maximum-likelihood quantum amplitude estimation (MLQAE) to put the algorithm in a more prescriptive form, including scenarios where quantum circuit depth is limited.
We then propose and numerically validate a modification to the algorithm to overcome this problem, bringing the algorithm even closer to being useful as a practical subroutine on near- and mid-term quantum hardware.
arXiv Detail & Related papers (2022-09-07T17:30:37Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.