Beyond the universal Dyson singularity for 1-D chains with hopping
disorder
- URL: http://arxiv.org/abs/2107.08518v1
- Date: Sun, 18 Jul 2021 19:07:19 GMT
- Title: Beyond the universal Dyson singularity for 1-D chains with hopping
disorder
- Authors: Akshay Krishna and R. N. Bhatt
- Abstract summary: We study a simple non-interacting nearest neighbor tight-binding model in one dimension with disorder.
We show here that this universal form can be violated in a tunable manner if the hopping elements are chosen from a divergent probability distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study a simple non-interacting nearest neighbor tight-binding model in one
dimension with disorder, where the hopping terms are chosen randomly. This
model exhibits a well-known singularity at the band center both in the density
of states and localization length. If the probability distribution of the
hopping terms is well-behaved, then the singularities exhibit universal
behavior, the functional form of which was first discovered by Freeman Dyson in
the context of a chain of classical harmonic oscillators. We show here that
this universal form can be violated in a tunable manner if the hopping elements
are chosen from a divergent probability distribution. We also demonstrate a
connection between a breakdown of universality in this quantum problem and an
analogous scenario in the classical domain - that of random walks and diffusion
with anomalous exponents.
Related papers
- Localization transitions in quadratic systems without quantum chaos [0.0]
We study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space to localization in position space.
We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it.
Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
arXiv Detail & Related papers (2024-10-07T14:29:32Z) - Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Analytical approximations for generalized quantum Rabi models [7.708919339137053]
The quantum Rabi model serves as the simplest non-integrable yet solvable model describing the interaction between a two-level system and a single mode of a bosonic field.
We show that the energy spectrum of the generalized quantum Rabi model can be analytically determined by a bi-confluent Fuchsian equation.
arXiv Detail & Related papers (2024-01-11T01:42:17Z) - Diagnosing non-Hermitian Many-Body Localization and Quantum Chaos via Singular Value Decomposition [0.0]
Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized eigenstates.
This is accompanied by distinct spectral statistics: chaotic for the delocalized phase and integrable for the localized phase.
We ask whether random dissipation (without random disorder) can induce chaotic or localized behavior in an otherwise integrable system.
arXiv Detail & Related papers (2023-11-27T19:00:01Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Distinct universality classes of diffusive transport from full counting
statistics [0.4014524824655105]
We study the full counting statistics of spin transport in various integrable and non-integrable anisotropic one-dimensional spin models.
We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian universality class.
Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
arXiv Detail & Related papers (2022-03-17T18:00:01Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Quantum eigenstates from classical Gibbs distributions [0.0]
We discuss how the language of wave functions (state vectors) and associated non-commuting Hermitian operators naturally emerges from classical mechanics.
We show that some paradigmatic examples such as tunneling, band structures, Berry phases, Landau levels, level statistics and quantum eigenstates in chaotic potentials can be reproduced to a surprising precision from a classical Gibbs ensemble.
arXiv Detail & Related papers (2020-07-14T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.