論文の概要: Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images
- arxiv url: http://arxiv.org/abs/2107.08673v1
- Date: Mon, 19 Jul 2021 08:19:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 23:57:44.050633
- Title: Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images
- Title(参考訳): マルチモーダルMRI画像を用いたアルツハイマー病分類のための入力非依存的深層学習
- Authors: Aidana Massalimova and Huseyin Atakan Varol
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
本研究では,通常の認知,軽度認知障害,ADクラスを分類するために,マルチモーダル・ディープ・ラーニング・アプローチを用いる。
- 参考スコア(独自算出の注目度): 1.4848525762485871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease (AD) is a progressive brain disorder that causes memory
and functional impairments. The advances in machine learning and publicly
available medical datasets initiated multiple studies in AD diagnosis. In this
work, we utilize a multi-modal deep learning approach in classifying normal
cognition, mild cognitive impairment and AD classes on the basis of structural
MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In
addition to a conventional multi-modal network, we also present an input
agnostic architecture that allows diagnosis with either sMRI or DTI scan, which
distinguishes our method from previous multi-modal machine learning-based
methods. The results show that the input agnostic model achieves 0.96 accuracy
when both structural MRI and DTI scans are provided as inputs.
- Abstract(参考訳): アルツハイマー病(Alzheimer's disease、AD)は、記憶障害や機能障害を引き起こす進行性脳疾患である。
機械学習と一般公開された医療データセットの進歩は、AD診断の複数の研究を開始した。
本研究では,OASIS-3データセットからの構造MRIおよび拡散テンソルイメージング(DTI)スキャンに基づいて,正常認知,軽度認知障害,ADクラスを分類するための多モードディープラーニングアプローチを利用する。
また,従来のマルチモーダルネットワークに加えて,従来のマルチモーダル機械学習法と区別するsmriまたはdtiスキャンによる診断を可能にする入力非依存アーキテクチャを提案する。
その結果, 構造的MRIとDTIスキャンの両方が入力として提供される場合, 入力非依存モデルでは0.96精度が得られた。
関連論文リスト
- Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
アルツハイマー病(英: Alzheimer's Disease、AD)は、記憶障害、執行機能障害、性格変化を特徴とする複雑な神経変性疾患である。
本研究では,臨床,認知,神経画像,脳波データを統合した高度なマルチモーダル分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-29T08:26:00Z) - Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis [11.295734491885682]
本研究の目的は、深層学習モデルを用いてMRI画像の分類を行い、アルツハイマー病の異なる段階を同定することである。
実験の結果,Xceptionモデルに基づくディープラーニングフレームワークは,マルチクラスMRI画像分類タスクにおいて99.6%の精度を達成した。
論文 参考訳(メタデータ) (2024-03-24T16:11:27Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Multi-modal Graph Neural Network for Early Diagnosis of Alzheimer's
Disease from sMRI and PET Scans [11.420077093805382]
我々は,非ユークリッド領域の問題に対処するためのグラフニューラルネットワーク(GNN)を提案する。
本研究では,sMRIやPET画像から脳ネットワークを生成可能であることを示す。
次に、各モーダルが独自のGNNの分岐を持つマルチモーダルGNNフレームワークを提案し、その多モーダルデータを組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2023-07-31T02:04:05Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - Applications of Deep Learning Techniques for Automated Multiple
Sclerosis Detection Using Magnetic Resonance Imaging: A Review [11.505730390079645]
多発性硬化症(Multiple Sclerosis、MS)は、神経系の機能に有害な影響を与える人の視覚、感覚、運動の障害を引き起こす脳疾患である。
近年,MRIを用いたMSの正確な診断のために,人工知能(AI)に基づくコンピュータ支援診断システム(CADS)が提案されている。
本稿では,MRI のニューロイメージング・モダリティを用いた DL 技術を用いた自動MS診断法について概説する。
論文 参考訳(メタデータ) (2021-05-11T09:08:48Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
提案した深層学習モデル ASD-DiagNet は神経型スキャンから ASD の脳スキャンの分類に一貫した精度を示す。
我々の手法はAuto-ASD-Networkと呼ばれ、ディープラーニングとサポートベクトルマシン(SVM)を組み合わせて、ニューロタイプスキャンからASDスキャンを分類する。
論文 参考訳(メタデータ) (2020-03-02T18:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。